OPTIMAL PROJECTIVE SPECTRA

VERA FISCHER AND JULIA MILLHOUSE

ABsTRACT. We give another proof of the consistency of 8y = a < § = ¢ = Ny by showing
Shelah’s original forcing to obtain the inequality satisfies a stronger combinatorial property than
preserving the unboundedness of the ground model reals. Namely we show the forcing and
its iterations preserve tight mad families, and use this result to furthermore show the above
inequality is compatible with a A} wellorder of the reals in a model with ¢ = X, the witness to
a = N, is coanalytic, and there exists a II3 tight mad family of size ¢. In each of these cases the
projective complexity is minimal.

1. INTRODUCTION

The purpose of this paper is to reveal a combinatorial property of a rather well-known proper
forcing notion introduced by Shelah in 1984 (see Definition 16), designed to give the consistency
of Ny = b < 5 = Ny, thereby establishing the consistency of b and s. Namely we show this
partial order satisfies an iterable preservation property (see Definition 3) introduced by Guzman,
Hrusék, and Tellez, which guarantees the preservation of tight mad families under countable
support iterations.

Proposition (See Proposition 27). Let Q be the forcing notion of Definition 16, and let A € V
be a tight mad family. Let G be Q-generic over V. Then (A is a tight mad family)Y[¢].

The notion Q of [She84, Definition 6.8] is the first instance of a so-called creature forcing,
which now refers to a broad class of forcing notions (see [RS99]); it adds a generic real unsplit
by the ground model reals in a similar manner as Mathias forcing, though unlike Mathias forcing
Q is almost w®”-bounding. This latter fact implies that in a countable support iteration of Q,
the ground model reals remain an unbounded family, thus providing a witness to b = Ny, while
the former fact implies that in an ws-length countable support iteration of Q we have s > No.
Since ZFC proves b < a and countable support iterations of QQ preserve a witness to a = Ny, the
fact (b = Nl)V[G] is a consequence of the ZFC inequality and the above preservation theorem.
This gives an alternative proof of the consistency of b = N; < s = Ny first established in [She84,
Theorem 3.1].

This will be applied to give the following result at the intersection of descriptive set theory and
set theory of the reals. Using a countable support iteration of S-proper forcing notions we show:
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Theorem (Theorem 84). It is consistent with Xy = a < § = ¢ = Ny that there exists a A}
wellorder of the reals, a coanalytic tight mad family of size Ny, and a I} tight mad family of size

Ny.

By classical theorems of Mansfield, Mathias [Mat77], and Mansfield-Solovay, respectively, these
projective definitions are of minimal descriptive complexity, i.e. they are optimal. Theorem 84
will be proved through a series of intermediary steps, beginning with the presentation of the
construction of a Al wellorder of the reals of Fischer and Friedman [FF10]. This construction gave
the first instance of a model with a Al wellorder and a nontrivial theory of cardinal characteristics,
and improved Harrington’s result [Har77] on the consistency of a A} wellorder together with ¢
arbitrarily large and Martin’s Axiom (MA).

Theorem (Theorem 61). It is consistent with Ry = a < 5 = ¢ = Ny that there exists a Al-
definable wellorder of the reals and moreover a = X; is witnessed by a IT} tight mad family.

In the recent literature there is interest in the projective definability of witnesses to cardi-
nal characteristics; the relevant body of work includes, for example, [BFB22|, [FFZ11]|, [FS21],
[FFK13], [BK13], [FFST25] or [FSS25]. We will extend this line of inquiry by asking about the
projective definability of witnesses for all cardinals x belonging to the set

spec(a) = {|]A] | A C [w]”, A is mad},

analagously to Hechler’s [Hec72| generalization of the study of the cardinal a = min(spec(a)).
Towards this end we consider an S-proper countable support iteration given Friedman and Zdom-
skyy [FZ10] (see Definition 68), whose purpose is to show the consistency of b = ¢ = Ny with a
[1}-definable tight mad family. We show the iterand of their construction responsible for adding
the TI3 tight mad family of size ¢ strongly preserves ground model tight mad families (Proposition
78), and thereby obtain:

Theorem (Theorem 83). It is consistent that a = Ry < ¢ = Rg, and there exists a I1}-definable
tight mad family of size Ny, and a II3-definable tight mad family of size Rs.

By a result of Raghavan [Rag09| and the Mansfield-Solovay theorem, this is the best possible
projective definability of a tight mad family of size strictly greater than N;.

In Section 2 we introduce the forcing notion @Q, the notion of a tight mad family and strong
preservation of tightness, and prove Proposition 27. In Section 3 we define the countable support
iteration of Fischer and Friedman for adding a A} wellorder, and prove Theorem 61. The following
Section 4 gives the definition of the Friedman-Zdomskyy forcing, shows it preserves tight mad
families, and proves Theorem 83. In Section 5 we show how these results are weaved together to
yield Theorem 84. The last section includes remarks and open questions.

2. CREATURE FORCING

Define the relation <* of eventual domination on the collection w® by letting f <* ¢ if and
only if there exists n € w such that for all m > n, f(m) < g(m). Define the relation splits on the
collection [w]* by letting a split b if and only if both b N a and b\ a are infinite. In 1984 Shelah
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answered a question of Nyikos by showing that it is consistent that the minimal size of a family
F C w* which is unbounded with respect to <* can be strictly less than the minimal size of a
splitting family S C [w]“, that is, a family S with the property that for any infinite b C w there
is a € § which splits b. We denote with b and s these respective cardinalities:

b =min{|F| | F C w® is <" -unbounded},
s =min{|S| | S C [w]¥ is splitting}.

That s < b is consistent was already shown in 1980 by Balcar and Simon |[BPS80, Remark
4.7], during an investigation of topological properties of the space of all ultrafilters on w. Shelah
[She84, Section 4] also shows that s < b also holds in a generic extension by a finite support
iteration of Hechler forcing of length k, for Kk > wo a regular cardinal.

ZFC proves the following inequalities,

—s 0 —

?

Ny —

o — o

Q — a

—

where an arrow between the cardinals represents the relation “less than or equal to”. The cardinal
0, the dual of b, is the minimal size of a dominating family, that is, a family F C w® such that
for all f € w® there is g € F such that f(n) < g(n) for all but finitely many n € w. Hechler
forcing is the standard forcing notion for increasing 0, however it also increases the size of b.
A family A C [w]¥ is almost disjoint if a N b is finite for every a,b € A, and such a familly is
maximal almost disjoint (mad) if A is maximal with respect to inclusion among all almost disjoint
families; equivalently, for every b € [w]“ there exists a € A such that a N b is infinite. We will
always consider infinite mad families. The cardinal a denotes the minimal size of a mad family;
the cardinals a and 0 are independent.

One approach to obtaining a model in which s = Ny is with a countable support iteration
of Mathias forcing M, this being the partial order consisting of (s, A) € [w]<¥ X [w]¥, with
max s < min A, and the extension relation defined as (¢, B) < (s, A) if and only if ¢ end-extends
s, BC A andt\ s C A. For any X C [w]“, the set

Dx ={(s,A)eM|ACXVACw\X}

is dense in M, and for this reason Mathias forcing adds a real a € [w]“ such that one of a N X or
a\ X is finite, when X is any ground model infinite subset of w. This implies the ground model
[w]¥ cannot be a splitting family.

Mathias forcing cannot be used to show the consistency of b < s. The issue is that if G is M-
generic and a := |J{s | A(s, A) € G}, then a is an infinite subset of w such that the enumeration
function e,: w — a is a dominating real over V, meaning e, has the property that f <* e,
whenever f € w* NV is a ground model function, and so provides a witness that w* NV is no
longer <*-unbounded in the M-generic extension. In other words, the Mathias reals grow too fast
to preserve the unboundedness of w* NV, and in a countable support iteration of M the bounding
number b is of size Ny = ¢.
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To remediate this problem Shelah’s original “creature forcing” of [She84|, henceforth denoted
by Q (Definition 16 below), slows the growth of the generic.! Rather than taking just A C [w]* as
the second coordinate of the condition, this which guides the construction of the generic real, one
considers infinite sequences of finite subsets of w, (s; : i € w) such that maxs; < min s;41, and
equips each s; with a measure h;: P(s;) — w (see Definition 12 of a logarithmic measure). This
allows for careful selection of the integers with which one extends a given finite approximation s,
so that the resulting generic real does not bound all ground model f € w“ simultaneously, and is
a real not split by the ground model [w]¥ for similar reasons as with M.

A proper forcing P such that in any P-generic extension, the set of ground model reals w* NV
remains unbounded with respect to <*, is known as weakly w“-bounding. However this property
is not preserved under countable support iterations, and therefore to show a countable support
iteration of length ws of QQ preserves unboundedness of the ground model reals it suffices to show
that Q has the slightly stronger property of being almost w*-bounding:

Definition 1. A forcing notion P is almost w*-bounding if and only if for every p € P and every
P name f for an element of w®, there exists g € w* NV with the property that for every A € [w]¥,
there is g4 < p such that

ga - 3%n € A(f(n) < g(n)).

Countable support iterations of almost w“-bounding forcings are weakly w*-bounding; this is
shown in [Abrl0, Theorem 4.4], and Section 4 of [Abrl0| contains more in depth discussion of
these notions.

Aside from establishing the independence of s and b, another important contribution of [She84]
is responding to a question of Mathias, who asked if it is consistent that in a model of b < s, also
N1 < a; Shelah gives a positive answer, but it is only after a modification of his original forcing
Q that this can be shown. Indeed, he shows a = N; in the countable support iteration of Q by
directly constructing the specific mad family in the ground model, utilizing that CH holds for
this construction, and then shows this particular mad family is indestructible under Q and its
iterations.

In 1995 Alan Dow [Dow95| constructs a mad family that is indestructible with respect to
countable support iterations of Miller forcing. Miller forcing, also known as rational perfect
set forcing, was introduced by Arnold Miller in 1984 [Mil84| with the purpose of increasing the
dominating number 0 while keeping b small. It is the partial order consisting of trees T' C w<¥
such that for every t € T there exists s € T extending ¢ and such that s has infinitely many
immediate successors in T'; the extension relation is given by T' < S if and only if T is a subtree of
S. Miller forcing is proper [Dow95, Proposition 8.11|, and like the creature forcing of [She84| this
forcing is almost w“-bounding [Dow95, Lemma 8.13]. Unlike Shelah’s creature forcing however,
Miller forcing does not add an unsplit real [Mil84, Proposition 3.3].

Since 1984 the theory of preservation in forcing has considerably developed; see, for example,
[Shel7] or [Gol93]. Likewise has been developed the theory of indestructibility of various witnesses
to cardinal characteristics, in particular the indestructibility of mad families; see [BY05], [Hru01],

IThe term creature forcing now refers to a broad class of forcing notions; see [RS99].
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or [HGF03]. In 2020, Guzman, Hrugék, and Ferreira study the preservation of tight mad families,
where:

Definition 2. An almost disjoint family A C [w]“ is tight if for all countable collections B C
Z(A)*, there exists a single a € A such that a N b is infinite for each b € B.

Above, Z(A)T denotes the complements of the sets belonging to the ideal generated by A and
the finite subsets of w:

Z(A) ={bCw|3F € [A* b | JF}.

Notice that if an almost disjoint family is tight, then it is immediately maximal. This strength-
ening initially appeared in the work of Malykhin [Mal89] in 1989, under the name of w-mad
families, and the connection of these families to Cohen-indestructibility was studied by Kurili¢
in 2001 [KurOl]. In fact, the existence of tight mad families is equivalent to the existence of
Cohen-indestructible mad families: on the one hand, tight mad families are Cohen-indestructible,
while on the other hand if A is a Cohen-indestructible mad family, there exists B € Z(.A) such
that A | B:={ANB | A € A} is a tight mad family; see [Kur01, Theorem 4]. The existence of
tight mad families also follows from the assumption b = ¢ and a certain parametrized {-principle
(see [HGF03]). Nonetheless it remains a long standing open question if ZFC proves the existence
of tight mad families.

One of the important contributions of [GHT20| to the study of tight mad families was the
introduction of a property of proper forcings sufficient for guaranteeing the preservation of tight
mad families.

Definition 3 ([GHT20, Definition 7.1]). Let A be a tight mad family. We say a proper forcing
notion P strongly preserves the tightness of A if for every p € P and every countable elementary
M < Hy, where 0 is a sufficiently large regular cardinal so that P, A,p € M, and for every
B € Z(A) such that BNY is infinite for all Y € Z(A)* N M, there exists ¢ < p such that
q € (M,P)-generic and ¢ I+ “VZ € (Z(A)" N M[G])(|Z N B| = w)”. Such a ¢ is called an
(M, P, A, B)-generic condition.

It is easy to see that if IP is proper and preserves the tightness of some A, then A remains
tight in any P-generic extension. Crucially, this property is preserved under countable support
iterations. Similarly to the proof that properness is preserved under countable support iterations
(see [Abr10] or [She82|), the authors of [GHT20| show this is the case.

Lemma 4 (|GHT20, Lemma 6.3|). Let A be a tight mad family, let P be a proper forcing strongly
preserving the tightness of A, and let Q be a P-name for a forcing notion such that IFp“Q strongly
preserves the tightness of A”. Then P Q strongly preserves the tightness of A. Furthermore
if B € Z(A), and M is a countable elementary submodel of Hy with A, P, QeM.,ifpePis
(M, P, A, B)-generic and ¢ is a P-name for a condition in Q such that p IF¢ is (M[G], Q, A, B)-
generic”, then (p, ) is an (M, P x Q, A, B)-generic condition.

2Recall an (M, P)-generic condition is a condition ¢ € P such that ¢ IF D NG N M # 0 whenever D € M is a

dense open subset of P, and G denotes the canonical name for the P-generic filter. A forcing PP is proper if for any
M < Hy the set of (M, P)-generic conditions is dense below any p € M NP.
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Proposition 5 ([GHT20, Proposition 6.4]). Let v be an ordinal, let A4 be a tight mad family,
and let P = (Pa,(@g :a < 7,8 < ) be a countable support iteration of proper forcings such
that Il—pa“(@a strongly preserves the tightness of A”. Let B € Z(A), and let M be a countable
elementary submodel of Hy, where 6 a sufficiently large regular cardinal, such that A, P,y € M.
Then for every @« € M N~ and for every p € P, such that p is (M,P,, A, B)-generic, if ¢ is a
P,-name such that p IFp, "¢ € P, N M and ¢ [ o € G,”, then there exists p € P,, such that p is
(M, P, A, B)-generic, p [ a = p, and plp, ¢ € G.

Lemma 6 (|GHT20, Corollary 6.5]). Let v be an ordinal, and let P = (P,, Qg : e <, 8 < 7) be
a countable support iteration such that for all o < 7, IFp_* Q, strongly preserves the tightness
of A”. Then P strongly preserves the tightness of A.

Definition 3 thus serves as a key tool in showing a forcing notion does not increase the size of a,
and therefore also preserves the size of b. Some examples of forcings exhibiting this property are
Miller forcing, Miller partition forcing, and Sacks forcing. Our main theorem includes Shelah’s
creature forcing to this list, and provides an alternative proof of Shelah’s result that b < s in
generic extension via a countable support iteration of Q.

Proposition (See Proposition 27). Shelah’s forcing Q strongly preserves the tightness of tight
mad families from the ground model.

Theorem (See Theorem 30; [She84, Theorem 3.1]). Let V be a model of CH and let (P,, Qg :
a < wsg, B < we) be a countable support iteration with such that Q, is a P, name for Q. If G is
P,,-generic over V', then in V[G] it holds that X} = b =a < s = Ny.

The standard approach in the literature thus far for showing a proper forcing P strongly pre-
serves tightness as in Definition 3, is to modify the construction of the (M, P)-generic in the
following way. Suppose M is a countable elementary submodel of Hy, for 6 sufficiently large,
containing P, 4 and p € M NP. We inductively construct a sequence (p, : n € w) C MNP
below p with p,+1 < p, for each n € w, and in order to obtain an (M, P)-generic condition,
we only demand that at each inductive stage n, p, € D, where D,, comes from an enumeration
of the dense open subsets of P which are in M. To furthermore obtain an (M, P, A, B)-generic
condition, we also require that p,y1 forces “(Zn N B) \ n # (", where Z,, comes from a fixed,
repetitive enumeration of the P-names in M for an elements of Z(A)", and B € Z(A) is the fixed
witness that intersects each Y in the countable set Z(A)* N M in an infinite set. This is achieved
by what we shall call an outer hull argument.

Definition 7. If P is a forcing notion, p € P and Z is a P-name for a subset of w, the outer hull
of Z with respect to p is the set

Wy:={mecw|3Ir<p(rlkme2)}

Fact 8 (|[GHT20, Lemma 6.2]). For an almost disjoint family .A and P a forcing notion, if Z is a
P-name for an element of Z(A)", then for any p € P, W, € Z(A)*.
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The above follows from noting that Z will be forced by p to be a subset of Wp. Thus in order to
obtain a p,41 € P forcing that Z, N B\ n is nonempty, it suffices to note that W, € Z(A)* NM.
As BN W,, is infinite, there is m € B with m > n and m € W), N M; this latter fact yields the
desired pp41.

However, in the case of the creature forcing Q as well as the Friedman—Zdomskyy forcing of
Section 4, we must take more care into what type of extension we are taking and want to restrict
the existential quantifier in the definition of the outer hull. Thus we consider a refined notion of
the outer hull, and must prove that Fact 8 still holds for these refinements. These proofs can be
found as Claim 28 and Lemma 75 in the current section and in Section 4, respectively.

Before defining QQ and proving Proposition 27, we show that in some sense, the indestructible
mad families constructed by Shelah and Dow are canonical examples of tight mad families. The
following construction originates in the proof of [She84, Theorem 3.1|; see also [Shel7, Theorem
7.1, Chapter VI].

Proposition 9. Assume CH. Then there exists a tight mad family.

Proof. Fix an enumeration
{(By:new)|a<w}

of sequences (B : n € w), with B € [w]<* \ {0} and B N B, = 0 for all distinct m,n € w.

By induction on o < wi, recursively define a family A = {4, | @ < w1} as follows. First,
choose {A4,, | n € w} to be any partition of w into infinite sets.

For v € [w,w1), choose A, C w so that A, is almost disjoint from Ag for each § < «, and for
each 8 < a:

If for all k € w and o < « for j < k, for all m € w the set

{n€w|min(B)) >mA Bin| ] Aa, =0}
i<k

is infinite,
then:

(1) there exist infinitely many n € w such that BS C A,, and

(2) for all k € w and a;j < o for j < k, the set {n € w | Bin U Ay;) = 0} is infinite.

i<k

This can be done by induction, using ¢ = N;. Let A = {A, | @ < w1}. Clearly A is almost
disjoint; let us see that A is tight.

Let {C} | j € w} C Z(A)*. As each Cj is an infinite subset of w, it is a countable union of
singletons, C; = |,,¢,,1C;(n)}, where C;(n) denotes the (n + 1)-st smallest element of C;. Then
there exists §; < wy such that ({Cj(n)}:n € w) = <B£j :n € w). Let § < wq be such that §; <6
for every j € w, and so

{(BY inew)|jew C{B. new)|i<d}
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Then at stage § of the construction, for every j € w and «ay,...ar_1 < d, there are infinitely
many n € w such that Cj(n) > m and

Ci(n) N A, =0,

1<k

so by (1) of the construction, there exist infinitely many n such that {C;(n)} = BY C A
Therefore for each j € w, C;j N As is infinite, so A is indeed tight.
U

Dow |[Dow95, Proposition 8.24] shows that a generic extension over a model of CH by an weo-
length iteration of Miller forcing, 8; = s = a = b < 0 = Ny. In particular he shows that Miller
forcing is almost w*-bounding, giving b = Ny, though to show a = X; the approach is, like Shelah’s
[She84|, by directly constructing a mad family in the ground model and proving this family is
indestructible by iterations of Miller forcing. One difference between Dow’s construction and that
of Shelah’s is that the former only requires the assumption p = ¢ instead of full CH. The cardinal
invariant p refers to the pseudointersection number; it is the minimal cardinality of a collection
F C [w]¥ with the strong finite intersection property (SFIP), meaning for any finite F' C F the
intersection [ F' is infinite, and moreover there does not exist y € [w]* such that y C* x for every
x € F, where y C* z if and only if y \ « is finite. Every set of cardinality x < p with the SFIP
has a pseudointersection; this is the key to Dow’s construction.

Proposition 10 (|[Dow95, Lemma 2.3|). Assuming p = ¢, there exists a mad family A = {4, |
a < ¢} such that for any fixed enumeration

{(B%:n€ew)|a<c}of [[w<]“, for any a < ¢

If there exists § < « such that

(*) : for all I € Z(Ug-,, 4p); BS NI =0 for infinitely many n € w,
then there are infinitely many n such that BS C A,
Proof. We define A inductively by first letting {A, | n € w} be any partition of w into infinite
sets. Suppose Ag has been constructed for all 8 < «, and let Z, denote the ideal I(Uﬁ@l Ag).

We can assume without loss of generality that (x) holds for all § < «a. Next, for each finite
partial function s: w — «, define F to be the set consisting of all x € [w]<“ such that

ez Uiedom(s) As(z) =0, and
e Vi € dom(s) Im > maxdom(s) (Bf,gi) C x).

Let F = {Fs | s: w — «, sis a finite partial function}. Then F C [[w]<¥]“ has the SFIP.
Indeed, let s,t be distinct finite partial functions from w to «, and define h: w — « such that

hi) s(i) if i € dom(s);
1) =

t(j) if j € dom(¢) and i = maxdom(s) + 1+ j.
Then F, N F; = F, € F.
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Therefore F is a set with the SFIP and |F| = |a<¥| < ¢ = p, so by definition of p there exists
an infinite Y C [w]<“ such that Y C* F for each F' € F. Let A, :=JY. To see A, is as desired,
let 8 < «, and let s: w — « be such that s(0) = 3. Then

neAgNAy & IreY(neaxnAp)
=dreYnexNzgF,) CY\ Fj

and as the last set is finite, so is Ag N A,.

Moreover we can show that the set {n € w | BS C Ay} is infinite. Note that as Y N Fy is
infinite, it is in particular nonempty, and if y € Y N Fs then there is m > maxdom(s) with
Bf,go) = Bg C y C A,. Because maxdom(s) can be taken to be any n € w, as we only require
s(0) = j, the integer m above can be taken arbitrarily large. O

Proposition 11. Assume p = ¢ and let A = {4, | @ < ¢} be the mad family constructed above.
Then A is tight.

Proof. The proof proceeds almost identically to that of Proposition 9. Let {C; | j € w} C Z(A)™,
and for each j € w find o; < ¢ such that

{Cj(n)} :n € w) = (B, :n€w).

Then {«a; | j € w} is bounded below ¢, so there exists f < ¢ such that a; < f for all j € w.
Therefore

{{C)} inew) | jew) C (B new)|ax<p)
For each aj < f3, it cannot be that there is I € Zz such that B’ = {C;j(n)} N1 # 0 for all but
finitely many n € w, as this implies C; C* I and so C;j € Zg. But this in turn implies C; € Z(A),
contradicting the hypothesis on C;. Therefore it must be that {n € w | By’ NI = ()} is infinite

for each I € Zg and each j € w, and therefore by construction of Ag there are infinitely many n
such that By’ = {Cj(n)} C Ag. O

The above together with the fact Miller forcing strongly preserves tightness gives a different
way of seeing a < 0 in the Miller model, the result of Dow [Dow95, Proposition 8.24].

We proceed with the proof of Proposition 27; for this we introduce the definition of the orig-
inal creature forcing, beginning with the introduction of logarithmic measures. We follow the
presentation as given in Abraham [Abr10]; see also [Fis0§].

Definition 12. For s a subset of w, a logarithmic measure on s is a function h: [s]<¥ — w such
that for all A,B € [s]<* and ¢ € w, if h(AU B) > ¢+ 1, then either h(A) > ¢ or h(B) > {. A
finite logarithmic measure is a pair (s, h) such that s C w is finite and & is a logarithmic measure
on s.

A standard induction gives the following.

Lemma 13 ([She84]; [Fis08, Lemma 2.1.3|). If h is a logarithmic measure on s and h(4gU...U
Ap_1) > £, then there exists j < n such that h(A4;) > ¢ — j.
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The level of a finite logarithmic measure (s, h) is the value h(s) and is denoted level(h). If
A C s such that h(A) > 0, then A is called h-positive.

Definition 14. Let P C [w]<¥ be an upwards closed collection. The logarithmic measure h on

<w

[w]<¥ induced by P is defined inductively on the cardinality of s € [w]<“ as follows:

(1) h(e) >0 for all e € [w]<¥;
(2) h(e) > 0 if and only if e € P;
(3) Forall £ > 1, h(e) > £+ 1 if and only if |e| > 1 and for all eg, e; C e such that e = egUey,
then h(eg) > £ or h(ey) > £.
Then h(e) = ¢ if and only if ¢ € w is maximal such that h(e) > £.

Note that if h is as above and e is such that h(e) > ¢, then h(a) > £ for all sets a D e. In the
following we will always assume an induced logarithmic measure is non-atomic, meaning there
are no h-positive singletons. This assumption is necessary for the proof of the next lemma, which
gives a condition on P which implies that the logarithmic measure it induces will take arbitrarily
high values, and this in turn allows for the construction of pure extensions with desired properties.

Lemma 15 ([Abrl0, Lemma 4.7], [Fis08, Lemma 2.1.9]). Let P C [w]|<“ be an upwards closed
collection of nonempty sets, and let h be the induced logarithmic measure. Suppose that:
(f) for every n € w and for every finite partition w = AgU...U A, _1, there exists i < n such
that [A;]<“ contains some = € P.

Then for every n, k € w, and finite partition of w into sets AgU...U A, _1, there exists ¢ < n and
x C A; such that h(z) > k.

The above can be proved by induction on k € w, arguing by contradiction and appealing to
Konig’s lemma,; see Fischer [Fis08, Lemma 2.1.9, Lemma 2.1.10]. We now define the main forcing
notion of interest.

Definition 16 (|She84, Definition 2.8|, [Fis08, Definition 1.3.5]). Let Q be the partial order
consisting of pairs p = (u,T’) such that u C w is finite and T is a sequence T' = (t; : i € w), where
for all i € w, t; is a pair t; = (s;, h;), where h; is a finite logarithmic measure on s;, and such that:

(1) max(u) < min(sop);

(2) max(s;) < min(s;41) for all i € w;

(3) (h(s;) : i € w) is unbounded and h;(s;) < hiy1(si+1) for all i € w.

For T as above, let int(t;) = s;, and int(T) = (J;c,, int(t;). When e C int(#;) is such that
hi(e) > 0, we say that e is t;-positive. For conditions (ug,Tp), (u1,T1) € Q, writing T} = (t{ RS
w), tZ = (sg,hg) for j < 2, define (u1,T1) < (uo, Tp), if and only if:

(5) uy end-extends ug and uy \ up C int(7p);
(6) int(71) C int(7p) and there is a sequence (B; : i € w) of finite subsets of w such that
max(B;) < min(B;11) and for each i € w, s} C Ujen, s?;
(7) For all i € w and e C s}, if hl(e) > 0 then there exists j € B; such that h?(e N 59) > 0.

In the case u; = g, call (uy,T1) a pure extension of (ug,Tp).
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If (0, T) is a condition in Q, we will identify ((), 7') and T, and this is meant by 7' € Q. For a

condition T'= (t; : i € w) € Q and k € w, let
ir(k) = min{i € w | k < min(int(¢;))}

and write T\ k = (t; : @ > ip(k)). Then T\ k € Q and 7'\ k¥ < T. Similarly if v C w is finite,
T\ max(u) € Q. By a slight abuse of notation, we will understand by (u,T \ u) to mean the
condition (u,T \ max(u)) in the case max(u) > min(int(¢g)).

That Q satisfies Axiom A (see [Abrl0, Definition 2.3]) and hence is proper can be established
by the following.

Definition 17. For n € w and (uo, Tp), (u1,T1) € Q, let <q be the usual partial order on Q. Let
us write T; = (£} : i € w) for j < 2. Define

(1) (u1,T1) <1 (uo, To) iff (u1,T1) <o (uo,To) and u1 = ug, and

(2) for n > 1 let (U1,T1) <n+1 (UO,TQ) iff (ul,Tl) <1 (UQ,T()) and tz-l = tg for all « < n.

In particular, (u1,71) <1 (uo,Tp) if and only if (u1,7T7) is a pure extension of (ug, Tp).

Definition 18. Given a sequence (p; : i € w) C Q, p; = (u,T3), T; = <t; : j € w) such that
Pi+1 <it1 p; for all i € w, define the fusion of (p; : i € w) to be the condition ¢ := (u, (t; : j € w))
such that t; := t;+1 for all j € w.

If ¢ is the fusion of (p; : i € w), then ¢ <;11 p; for all i € w. The following notion is crucial
both for proving that Q is proper and for our preservation result.

Definition 19. For (u,T) € Q, with 7" = (t; : i € w), and D an open dense subset of Q, we
say (u,T) is preprocessed for D and k € w if for every v C k such that v end-extends wu, if
(v,(tj : j > k)) has a pure extension in D, then already (v, (t; : j > k)) € D.

Note that if (u,T) € Q is preprocessed for D and k, then any extension of (u,T) is also
preprocessed for D and k.

Lemma 20 (Fischer [Fis08, Lemma 1.3.9]). For every open dense subset D C Q, every k € w,
and every p € Q, there exists ¢ € Q such that ¢ <gy1 p and ¢ is preprocessed for D and k.

As a consequence of the existence of fusion for Q:

Lemma 21. For every open dense D C Q and every p € Q there exists a pure extension ¢ < p
such that ¢ is preprocessed for D and every k € w.

Let C be a Q-name for a subset of w, and let j € w. Let C(]) denote the name for the j-th
element of C. We say a condition p decides C(35) if there exists £ € w such that p IF C(j) = /.
For such C and j € w, let

Ec(jy = {p € Q| p decides C(j)}.

Note that when p € Q forces that C is infinite, the set Ec¢(j) is open dense below p in Q.

)
Lemma 22. Let T be a pure condition in Q, C' a Q-name for an infinite subset of w, n,j € w,
and fix v € n. Then there exists R = (r; : i € w) € Q such that R < T and for all i € w and

ri-positive s C int(r;), there exists w C s such that (v Uw, R\ max(s)) decides C(3).
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Proof. Let T = (t; : i € w) with t; = (s;, h;). By Lemma 21 we can suppose that T' is preprocessed
for E¢ ;) and every k € w. Let P,(C(j)) denote those x € [int(T)]<* such that:

(1) For some k € w,  Nint(tx) is tx-positive;
(2) There exists w C x such that (vUw, (t; : i > max(x))) decides C(j).

Note that P,(C(j)) is upwards closed. Let h: [w]<* — w be the logarithmic measure induced
by P,(C(j)). We will show that h takes arbitrarily high values by showing property (f) of Lemma
15 holds.

Fix M € w and a finite partition w = Ag U ... Ay;_1. First,

Claim 23. There exists N < M and an extension 7" < T such that int(7") C Ay

Proof. Suppose towards contradiction that for all N < M there is no extension 77 < T such that
int(7") C Ayn. This implies that for any 77 = (t, : i € w) < T, with t; = (s}, h}), for all N < M
the sequence (h(s; N An) : i € w) ¢ Q, and therefore it must be that (hi(s}) N Ayx) : i € w) is
bounded. As 7" < T then also (h;(s; N An) : ¢ € w) is bounded, so let Jy € w be such that
hi(si N An) < Jy for every i € w. Let J := maxy<p Jy. Since T € Q, by (3) of Definition
16 there exists ¢ € w such that h;(s;) > J + M. But then hy(Uyopr5 NAN) > J+ M +1
so by Lemma 13 there exists N < M such that h;(s; NAy) > J+ M —-N >J+1>J, a

contradiction. ]

Therefore fix 7" and N < M as given by the above claim. Since (v,7”\ v) € Q, there exists
w C int(7"\ v) and R such that (vUw, R) is a condition in Q extending (v, 7"\ v) and (vUw, R)
decides the value of C(j). Since w C int(7” \ v) is finite and using the definition of the extension
mefmo,mi] (). Let 2 := U, emg my) i0(t,) and
note € [AnN]<¥. As 7"\ v € Q we may assume there is at least one m € [mg, m1] such that
int(¢),) is ¢, -positive. Then 7"\ v < T\ v so there exists k € w such that hy(int(¢),) Nint(tx)) =
hi(x Nint(tg)) > 0. Therefore  C int(7T") C Ay satisfies (1) in the definition of P,(C(5)).

We can also show that (2) holds: we have that w C x was such that (v Uw, R) € E¢yj), but
T was preprocessed for Eg(;) and maxw, and (vUw,T \ w) has a pure extension into Ec(j) so
already (vUw,T \ w) € E¢(;). Altogether we have found z € P, (C(j)) N [An]=%, verifying (7).

We can now define R = (r, : n € w), where 7, = (2, gn), inductively as follows. Clearly
P,(C(7)) is nonempty, as we just showed above, so pick zg € P,(C(5)), and let go := h | P(x0).
Assuming r; = (x;, g;) defined for all i < n so that max(z;) < min(z;+1) and ¢;(z;) < gi+1(Ti+1)
for i < n, since h takes arbitrarily high values there is z,41 € Py(C(j)) with h(zpi1) > h(x,).
We can assume max(x,) < min(z,+1), since otherwise h is bounded. Define g, +1 := h | P(zp41).
This completes the definition of R.

Then R € Q, and R extends T: as each z,, = int(r,) is a finite subset of int(7T") there are
mg < mj € w with z,, C Uz‘e[mg,m’f} int(t;), so the sequence ([mg,m7] : n € w) witnesses (6) and
(7) of Definition 16. Indeed, if s C z,, is such that g,(s) = h(s) > 0, by (1) of the definition of
P,(C(4)) there is k such that sNint(ty) is tx-positive, and necessarily k € [m, m}]. Moreover, R is
as desired, since if s C x; is r4-positive, by (2) of the definition of P,(C(j)) there is w C s such that

relation, there exists mg, my such that w C |J
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(vUw, (t; : 1 > max(s))) decides C(j), but (v Uw, (r; : i > max(s))) < (vUw, (t; : i > max(s)))
and so makes the same decision.
O

Remark 24. If a condition R in Q has the property as in the conclusion of the above lemma,
then any further extension retains this same property. Indeed, if 7' = (¢; : i € w) < R and
s C int(t;) is t;-positive, then there is j € w such that s Nint(r;) is 7;j-positive. Therefore there is
w C sNint(r;) so that (vUw, R\ max(sNint(r;))) decides C(j). So in particular w C s C int(¢;)
is such that (v Uw,T \ max(s)) makes the same decision about C(j), since it is an extension of
(vUw, T\ max(s Nint(r;))) < (v Uw, R\ max(sNint(r;))).

This is important for establishing the next lemma:

Lemma 25. For any T € Q, n,j € w and C a Q-name for an infinite subset of w, there exists
R=(r;:i€w) € Qsuch that R < T and for all v C n, for all i € w and r;-positive s C int(r;),
there is w C s such that (vUw, R\ s) decides C(j).

Proof. Fix T € Q, fix n, j € w, and let C' be a Q-name for an element of [w]*. Let {vy | k < 2"}
enumerate all subsets of n, and consider vg. By Lemma 22 there is Ty = (! : i € w) < T such
that for all i € w and tY-positive sets s C int(t?), there is wy C s such that (voUwg, Tp \ s) decides
C(5). Next considering v; and Ty, by Lemma 22 and Remark 24 there is Ty = (t} : i € w) < Tp
such that for all £ < 2 and vy, for all i € w and t}-positive set s C int(t}), there is wy C s
such that (vy Uwy, T1 \ s) decides C(j). Continuing in this way, for each k < 2" we obtain
T, = <tf 1 € w) € Q extending T and every Ty for £ < k, such that for all £ < k, for all i € w
and tF-positive s C int(tF), there exists wy C s such that (v, Uwy, T, \ s) decides C(5). Then
in particular R := Ton_1 € Q satisfies the conclusion of the lemma, since if v is any subset of n,
there is k < 2™ such that v = vg, and as R < T, for every ¢ € w and r;-positive s C int(r;) there
is w C s so that (v Uw, R\ s) decides C(j). O

Corollary 26. For any (u,T) € Q, any n,j € w, and any C a Q-name for an infinite subset of
w, there exists (u, R) <,+41 (u,T) such that for all v C n, for all i > n and for every s C int(r;)
which is r;-positive, there exists w C s such that (v Uw, R\ s) decides the value of C(j).

Proof. Fix (u,T) € Q and n,j € w, and write T' = (t; : i € w). Consider (0, (t; : i > n)) € Q. By

Lemma 25 there exists R’ = (r/

714 >mn) < (tj: 1 > n) with the property that for any v C n, any
i > n and r}-positive s C int(r}), there is w C s so that (v Uw, R\ s) decides C(j).
Define R = (r; : ¢ € w) by letting r; = ¢; for i < n, and for ¢ > n let r; = r,. Then

(u, R) <p41 (u,T) is as desired. O
The central result of this section is the following.

Proposition 27. Let A be a tight mad family. For every p € Q and M < Hy countable
elementary submodel, where @ is sufficiently large, containing Q, p, A, and every B € Z(A) such
that [BNY| =R for all Y € Z(A)* N M, and Z a Q-name for an element of Z(A)* in M, there
exists a pure extension ¢ < p such that ¢ is (M, Q, A, B)-generic.
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Proof. Fix 6, M and B as above, and let (u,Ty) be a condition in Q N M. Let {D, | n € w}
enumerate all open dense subsets of Q in M, and let {Zn | n € w} enumerate all Q-names
for subsets of w in M which are forced to be in Z(A)* such that each name appears infinitely
often. We inductively define a sequence (g, : n € w) of conditions in Q N M, where gy = (u, Tp),
qn = (u, Ty,) with T, = (&' : i € w), such that the following are satisfied:

(1) For all n € w, ¢nt1 <n+1 Gn;
(2) @n+1 is preprocessed for D,, and every k € w;
(3) Forallv C n, foralli > n and s C int(¢?*") which is ¢/ !-positive, if v is an end-extension
of u, then for some w C s, ((vUw), <t;7+1 :j > max(s))) - (Z, N B)\ n # 0.
Suppose gy, has been constructed thus far; we will define ¢, 1. Consider the condition (u, (¢} :
i > n)) < ¢,. By Lemma 21, there exists a pure extension (u, (t; : i > n)) < (u, (] : i > n))
which is preprocessed for D,, and every k € w. Let ¢° = (u, (t?’o i € w)), where for i < n,
t?’o =17, and t:-L’O =t/ for i > n. Then ¢° <,,+1 g, and ¢¥ satisfies (2).
Next, consider the set

Wy ={m e w|3r = (u,{th : i € W) <py1 ¢ satisfying:
Vo Cn Vi >n Vs Cint(t)) [s is ti-positive = Jw C s

(v Uw, (th - i >max(s))) IFm € Z,}
Claim 28. W, 11 € Z(A)" N M.

Proof. We have that W1 € M since it is definable from the forcing relation and from Q, ¢%,
and Z,, which are all assumed to be elements of M.

To see Wy11 € Z(A), let F be a finite subset of A; we show W,,11 \ |JF is infinite. Since
IFg Zn € Z(A)", in particular ¢© forces that Z,, is not finitely covered by J F, or in other words
q° forces that the set Z, \ |J F is infinite. Let C' be a Q-name for the set Z, \ |J F.

Now as ¢0 € Q, and C is a Q-name for an infinite subset of w, for all k € w, Corollary 26 gives
¢ <nt1 @Y, where ¢ = (u, Rj) and R; = (Tf : 4 € w) such that for all v C n, for all i > n and
rg—positive s C int(rf), there is w C s such that (vUw, R; \ s) decides C(j) and j > k. So there
exists m; € w such that

(vUw,R;\ s) - C(]) = m,;.

Note that if m; = C(4), then mj > j > k. Therefore for all k& € w there exists m; > k such
that m; € Wi, 11, witnessed by ¢’ as above, and moreover m & |J F since ¢/ I 1; ¢ |JF. Thus
Wyt1 \ UF is infinite, and as F € [A]<“ was arbitrary this proves the claim. O

By assumption on the set B, there exists my41 € Wy41 N B such that m > n. Let r = (u, (¢} :
i € w)) <pt1 ) be given by my1 € Wiy, and define g1 = (u, (¢"! 1 i € w)) such that
t?“ =t} for all i € w. Since r <, 11 qg <n+1 qn, We have that ¢o+1 <n+1 ¢n. This completes the
inductive construction.

Let ¢ = (u,T) be the fusion of the g,’s (see Definition 18), so T = (t; : i € w) with t; = /!
for all 7 € w.
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We show ¢ is (M, Q)-generic by showing that for all n € w, the set D,, N M is predense below
g. Towards this end let » = (v, R) be an arbitrary extension of ¢; as D,, is dense there exists
w C int(R) such that (vUw, R\max(w)) € D,,. Then as (vUw, R\max(w)) < (u, Tp4+1\max(w)) <
gn+1 and g1 is preprocessed for D, and max(w), already 7’ = (v U w, Tp4+1 \ max(w)) € D,.
Then r' € M and r, 7" are compatible, as witnessed by the condition (vUw, R\max(w)). Therefore
q is an (M, Q)-generic condition.

Next, we show ¢ IF |Z,NB| = w for every n € w. Fix n, and let (v, R) < g be arbitrary; it suffices
to show that for every k € w there exists an extension of (v, R) which forces (Z, N B) \ k # 0.
Find i € w such that i > k, v C 4, Z, = Z; and s = int(R) Nint(t;) is t;-positive. The fact that s
ist; = tﬁ“—positive and r < ¢ < g;+1 implies, by item (3), that there exists w C s such that

(vUw), <t§+1 2§ > max(s))) Ik miy1 € Z;,

where m;11 € B and m;1q1 > i > k.
Then (vUw, R\ s) is an extension both of (v, R) and of the condition (vUw, (t;+1 : j > max(s))),
so by the latter,
(vUw, R\ s)IFmi € (BNZ)\ k= (BNZy)\k.

This completes the proof that ¢ is an (M, Q, A, B)-generic condition, giving that A remains a
tight mad family in any Q-generic extension. O

Lemma 29. Let G be Q-generic over V, let S C [w]¥ be an element of V, and let a = {s C w |
3T (s, T) € G}. Then for all b € S, (b does not split a)V1C].

Proof. For G, S, and a as above, for any b € S the set
Dy ={(s,T) € Q| int(T) CbVint(T) Cw )\ b}

is dense in Q. This uses the fact bU (w \ b) is a finite partition of w and so any condition (s,T)
admits a pure extension (s,7”) such that int(7”) C b or int(7”) C w \ b; see Claim 23.
O

Theorem 30 ([She84, Theorem 3.1]). Assume CH, and let (Po,Qp : @ < wy,B < wa) be a
countable support iteration such that for all o < wa, Qu is a Po-name for the partial order Q of
Definition 16. Let G be P,,,-generic over V.. Then V[G] = N1 = a < s = No.

Proof. Let A € V be a tight mad family; such a mad family exists since CH holds in V. Let G
be P,,,-generic over V. For all a < wy, by Proposition 27, P, forces that Q is a proper forcing
which strongly preserves the tightness of A. Then Py, is a countable support iteration of proper
ViG]
Ny

forcings and hence is proper (see [Abrl0, Theorem 2.7]), and so NY = . Moreover, using

Lemma 6, we also have that P, strongly preserves the tightness and hence maximality of A.
Therefore V[G] = a = Ry, since (A is mad and |A| = R;)V[¢],

Let S C [w]¥ be family of cardinality < Ry. Then there exists a < wa such that S € V[G,],
where G, = G NP, is P,-generic over V. This uses the fact that since CH holds in the ground
model, P,,, is Np-cc (see [Abr10, Theorem 2.10]). By definition of Q4 and by Lemma 29, in
V[Gas1], S is not a splitting family, so also this holds in V[G]. Therefore (s = Rq)V[¢], O
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3. SACKS CODING AND TIGHTNESS

Projective wellorderings of the reals are indicative of to what extent regularity properties hold
for the projective classes, as the definable wellordering yields examples of nonregular sets—such
as a non-Lebesgue measurable set, a set without the property of Baire, or in general any other
interesting set arising from an application of the Axiom of Choice—which are of the same de-
scriptive complexity as that of the wellorder. Accordingly, projectively definable wellorderings
are typically antagonistic with large cardinal assumptions and compactness principles, as these
assert regularity properties and determinacy for the projective pointclasses.

Recall that under V = L there exists a Al wellorder of the reals [G6d39]; this complexity is
optimal by the Lebesgue measurability of analytic sets. Conversely, Mansfield’s theorem states
that if there exists a ¥} wellordering of the reals, then all reals are constructible. Using a finite
support iteration of ccc forcings, Harrington [Har77, Theorem B| showed that a Ail)) wellordering is
consistent with ~CH and Martin’s Axiom (MA); Friedman and Caicedo showed that the Bounded
Proper Forcing Axiom (BFPA) and the assumption w; = wf imply the existence of a 3} wellorder
of the reals [CF11].

However in these last two constructions, the forcing axioms rendered all cardinal characteristics
equivalent to ¢, and the question of projective wellorderings of the reals in models with nontrivial
structure of cardinal characteristics of the continuum was first addressed by Fischer and Friedman
in 2010 [FF10]. Using a countable support iteration of S-proper forcing notions they showed a
Aé wellorder of the reals is compatible with ¢ = N9 and each of the following inequalities: 0 < ¢,
b < a=s5, 0 < g This was made possible by defining a new forcing notion, Sacks coding,
which uses Sacks reals to code the wellorder and gives a way of forcing a A:I,, wellorder with an
w“-bounding iteration.

Mad families of size continuum can be obtained giving a wellorder of the continuum, and
so it is natural to ask about their definability in the sense of classical descriptive set theory.
Mathias [Mat77] was the first to do this, when in 1969 he showed no analytic almost disjoint
family can be maximal. Subsequent work revealed further the antagonism between mad families
and determinacy assumptions: under ZF + DC + Projective Determinacy (PD) there are no
projectively definable mad families [NN18|, under V' = L(R) + AD there are no mad families
[BHST22|, and there are no mad families in Solovay’s model [T618].

On the other hand, there exist E% mad families under V' = L, as a recursive construction along
the ¥3-good wellorder <j, of the constructible reals yields such a family. This was significantly
improved by Miller [Mil89, Theorem 8.23|,who constructed in L a coanalytic mad family, along
with various other combinatorial objects such as maximal independent families and Hamel bases.
His technique originates from a robust coding method of Erdés, Kunen, and Mauldin [EKMS81],
which has by now been systematized into a black-box theorem yielding I1} combinatorially sig-
nificant sets of reals in L; see [Vid14]. Térnquist [T09] showed the assumption V' = L is not
necessary to obtain the coanalytic mad family, namely that it is sufficient to assume there exists
a Y3 mad family.
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It is interesting to ask whether in ZFC alone one can construct a cardinal preserving forcing
iteration yielding a generic extension with Al wellorder in the presence of —~CH, while simulta-
neously controlling values of cardinal characteristics as well as the definability of the witnesses
to those values. In 2022 Bergfalk, Fischer, and Switzer established that a A} wellorder of the
reals is consistent with a = u < i, a =i < u, and a < u = i, with the added feature that the
witnesses to the cardinal characteristics of value Xy can be taken to be coanalytic. They do this by
showing various preservation properties of the Sacks coding forcing, and in particular they show
this coding strongly preserves tightness of tight mad families from the ground model (|[BFB22,
Lemma 4.3|, given in Fact 49, item (5) below). In this section we use this last preservation result
as well as Proposition 27 to show the following:

Theorem 31 (See Theorem 61). It is consistent with a A} wellorder of the reals and ¢ = Ny that
Ny =a<s="Ny, and a = Ny is witnessed by a I}-definable tight mad family.

The obtention of a new cardinal inequality together with a projective wellorder of the reals
answers (1) of Question 7 from [FF10|, while the presence of a projective witness for a = N; of
minimal complexity responds to (2) of Question 7 from [FF10].

Our strategy for the above theorem will be to define a countable support iteration in a model
of V = L, in which there exists a II}-definable tight mad family A by [BFB22, Lemma 4.2].
Each iterand will be a P,-name for an S-proper forcing (see Definition 34 below) which strongly
preserves the tightness of A, and along the way we construct the wellorder <g= J,, < <a by
defining the initial segments <., where <, wellorders the reals of LPa. We let <, denote a
P,-name for <,. This ordering <, can be naturally defined using the wellordering of the nice
P,-names for the reals of LFe: using appropriate bookeeping, at stage a we add a Sacks-generic
real coding a pair of reals z,y € VP such that x <, y. The way in which the a-th generic real
codes these intial stages of the iteration is done so to yield the Al-definability of the wellorder,
in the following way.

At stage «, the Sacks-generic real r, will code a countable sequence of generic club subsets of
wi,

Co = (Coym :m € Az +y))
as well as a set Y C wy, which have just been added to L¥. The set A(x * y) C w is a recursive
coding of the pair (z,y), and by adding C_;"a, indicates a pattern of stationary/nonstationary in
the sequence
(Satm :m € w) € L,
where Sq1m C wlL is stationary costationary in L, and Cyyy, N Saim = . Note that, if also 7,
codes the pair (z,y), then

Lire] E Az xy) € {m € w | Sa4m is nonstationary}.

If it can also be assured that for no m ¢ A(z x y), the set So4., loses its stationarity in the
final extension (an “accidental stationary kill”; this appears as Claim 59 below), the idea is that
in the final generic extension L[(rq : o < wa)], the wellorder <¢ has the following definition.

r<gy<s Jda<wy Liry] EA(z*y) = {m € w| Saim is nonstationary}.
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To make the above a (lightface) projective definition of <¢, the set Y is added after Cy in
order to localize the generic nonstationarity of each S,4, to a large class of countable transitive
ZF~ models (Definition 40 below); this uses what is sometimes referred to as “David’s Trick”.
Roughly, this allows us to bound the initial existential quantification to wé\/‘, where M belongs
to the said class of countable transitive models, and M contains the real r,. This idea will also
be explained in Section 4, when we add a generic I1} tight mad family of size c.

A very important fact we will use in our complexity calculations is that the satisfaction relation
|= for countable models of set theory is Al-definable; this follows since a countable model of set
theory is essentially a pair (w, F), such that E is a binary relation on w and (w, E) is a model
of set theory. All of this information can be coded by a single real; details are given in [MW85,
Example 1.20].

We next give the definitions of the three forcing notions involved in the definition of the count-
able support iteration giving a Aé wellorder of large continuum in [FF10| and then outline this
construction, with the appropriate modification allowing for Theorem 61.

3.1. Club shooting. Baumgartner, Harrington, and Kleinberg [BHK76| introduced a cardinal
preserving forcing notion which, given a stationary costationary S C w1, adds a closed unbounded
C C wy such that C NS = (). The forcing is often referred to as club shooting.

Definition 32. Let S C w; be a stationary costationary set. Define Q(S) to be the partial order
consisting of closed, bounded subsets of wy \ S, ordered by end-extension.

Lemma 33. The following hold:

(1) Q(S) is w-distributive, thus does not add new reals.?

(2) Let G be Q(S)-generic, and let Cq = J{d € Q(S) | d € G}. Then Cg is a club in wY[G},

and witnesses (S is nonstationary)"[¢].

Proof. See, for example, [Jec03, Chapter 25| or [Cum10, Section 6]. O

By item (2) above, Q(.S) is not a proper forcing notion, however, it still retains many of the
desirable properties of a proper forcing.

Definition 34. Let S C w; be a stationary set. A forcing notion P is S-proper if for all countable
elementary submodels M < Hy, with 0 sufficiently large, and such that M Nwy; € S, for every
p € PN M there is ¢ < p which is (M, P)-generic.

A proof of the following can be found in [Gol98, Theorem 3.7|

Lemma 35. Suppose S C ws is stationary and IP is an S-proper forcing notion. Then P preserves
w1 as well as the stationarity of any stationary subset of S.

Lemma 36. Q(S5) is (w1 \ S)-proper.

3A forcing notion P is w-distributive if the intersection of countably many dense open subsets of P is again dense
open. Equivalently, any w-distributive forcing adds no new countable sequences of ordinals.
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Importantly, S-properness is preserved under countable support iterations; this is proved as in
the case of properness (see for example, [Abrl0, Theorem 2.7]). That this proof also works to
yield the second clause below was noted in [BFB22, Lemma 14].

Lemma 37. Let (P,, Qg c a0 < 6,8 < §) be a countable support iteration such that for all o < 9,
Il—pa“Qa is an S-proper poset”. Then Ps is S-proper. Moreover, if A is a tight mad family in the
ground model and for all o < wo, Il—pa“@a strongly preserves the tightness of A”, then also Ps
strongly preserves the tightness of A.

The next two lemmas are shown in the case of proper forcings in [Abrl0, Theorem 2.10] and
[Abr10, Theorem 2.12|, respectively.

Lemma 38. Assume CH, and let <Pa,(@5 s a < 6,8 < 60) be a countable support iteration of
S-proper posets of length § < we, such that for all o < 4, Il—]pa“|Qa\ = wy”. Then Ps is No-cc.

Lemma 39. Assume CH, and let <Pa,@5 :a < 6,8 < 0) be a countable support iteration of
S-proper posets of length § < ws, such that for all a < §, IFp,“|Qq| = w1”. Then CH holds in V5.

3.2. Localization. The next forcing to do this has roots in René David’s work |[Dav82| on ab-
solute IT3 singletons, these being nonconstructible reals which are the unique solution to a I13
formula. The forcing notion below will allow for the localization of the generic clubs to a large
class of countable transitive ZF~ models, where ZF~ denotes ZF without the Powerset Axiom.
Definition 40. A transitive model M of ZF~ is called suitable if w)! exists and wy! = wQLM.

Throughout the rest of this section we assume V is a generic extension of L via a cofinality
preserving forcing extension.

Definition 41. For X C w; and a ¥;-sentence ¢(wy, X) with parameters wy and X such that ¢
holds in all suitable models M with wy, X € M, denote by L(¢) the set of all functions r: |r| — 2
where |r| = dom(r) is a countable limit ordinal, and such that:
(1) if v < |r| then v € X if and only if r(2v) = 1;
(2) if v < |r| and M is a countable suitable model such that v = wi and r [ v € M, then
My, X N7).

The extension relation is end-extension.

Each r € L(y) is an approximation to the characteristic function of a subset Y C w; such that
Even(Y) ={v|2y € Y} = X. The “odd part” of r, i.e. the values r takes on ordinals of the form
27y + 1, is used for the following.

Lemma 42 ([FF10, Lemma 1]). For every r € £(¢) and countable limit ordinal v > |r|, there
exists ' < r such that |r'| = ~.

Corollary 43 (|FF10, Lemma 2|). If G is L(p)-generic and M is a countable suitable model
such that |JG [ wM € M, then M | o(wM, X NwM).

Lemma 44 ([FF10, Lemma 3, Lemma 4|). L£(¢p) is proper, and moreover does not add new reals.
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3.2.1. Sacks Coding. Sacks coding, or coding with perfect trees, was first defined by Fischer and
Friedman [FF10]. Recall a tree T C 2<% is perfect if for all s € T there exists an extension ¢ of
s such that t € T and ¢t (i) € T for each i < 2. Sacks forcing is the partial order consisting of
perfect trees T C 2<%, and a condition S extends a condition T if S is a subtree of T. Sacks
forcing is proper, w*-bounding, adds a generic real which is the unique branch through each T in
the generic filter, and is often viewed as a very minimally destructive way of forcing —~CH. The
Sacks coding forcing defined below will inherit these properties, and in particular can be seen as
a minimally destructive way of forcing a Al wellorder in the presence of large continuum.

Throughout this section we assume V = L[Y], where Y C w; is generic over L for a cardinal
preserving forcing notion.

Definition 45. Fix n* € w. By induction on i < wy, define a sequence 1 = (u; : @ € wy) such
that 4; is an ordinal and (|u;| = No)¥, for each i < wy. Let po = 0, and supposing {(p; : j < i)
has been defined, let p; be the least ordinal u > sup,; p; such that :
(1) LY M) =g, Loy [Y
(2) LulY N = ZF;
(3) Lu[Y Ni] = “w is the largest cardinal”.
il

Let B; := L,,[Y Ni]. For r € 2, we say that r codes Y below i if for all j < 1,
JeY & LY Nnijllr] = ZF .
%,_/
=B;r]
For a tree T' C 2<% let |T'| denote the least ¢ < wy such that T' € B;.

Definition 46. (|FF10, Definition 2|) Sacks coding is the partial order C'(Y") consisting of perfect
trees T' C 2<% such that 7 codes Y below |T'| whenever r is a branch through 7. For Ty, Ty € C(Y),
let T71 < Ty if and only if T} is a subtree of Tj.

Remark 47. The hidden parameter n* above is needed for the preservation results pertaining
to definable combinatorial objects, e.g. item (5) of Fact 49 below. Specifically, n
an upper bound on the complexity of the formula expressing all relevant combinatorial properties

* is chosen to

which we want to reflect down to the models B;. In the present case of preserving a I} tight mad
family, n* = 5 is sufficient. See also [BFB22, Remark 1]

Remark 48. Let G be C(Y)-generic over L[Y]. Since the definition of C(Y") is absolute, it still
holds in L[Y][G] that if T' is any condition in C'(Y') and r is a branch through T,

LYNIG) =Y N[T| ={j <|T||Bjl[r] = ZF"}
In particular, if r € (G and v = sup{|T| | T € G}, then in L[Y][G],
YNy ={j<v|Bjlrl FZF"}.
Fact 49. The following hold.

(1) (J[FF10, Lemma 4]) For any j € w; and any T' € C(Y) with |T| < j, there exists T/ < T
such that |T"| = j.
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(2) (|[FF10, Lemma 7]) C(Y') is proper.
(3) ([FF10, Lemma 6|) Let G be C(Y)-generic over V and let r := (|G. Then in V[G], r
codes the set Y in the sense that for all j < w;

jeY & Bj[T‘] = ZF .

(4) ([FF10, Lemma 8]) C(Y) is w*-bounding.?
(5) (|[BFB22, Lemma 4.3]) Countable support iterations of C(Y) preserve the tightness of II1
tight mad families.

3.3. A Aé long wellorder. With the ingredients provided by the previous sections we proceed
with the proof of Theorem 61. The definition of the forcing construction requires the establishment
of some preliminaries.

Recall that ¢ is the assertion that there exists a sequence A = (Aq + &€ < wi) where A C &
for each £ < wy and for any X C wy, the set {{ < w; | X NE = A¢} is stationary. A is called
a {-sequence, and such a sequence can be constructed in L so that the sequence is Yq-definable
over L, ; see, for example, [Dev17, Theorem 3.3].

Proposition 50. Assume ¢ holds. Then there exists a sequence
S =(Sq:a<w)

which is 3;-definable over L, consisting of sets S, C w; that are stationary costationary in L,
and are almost disjoint in the sense that [S, N Sg| < wy for all distinct o, f < wyp. Furthermore
there exists a stationary S_; C wy such that S_1 NS =0 forall S € S

Moreover, if M, N are suitable models such that w{! = w{v , then SM and SV coincide on
wi N wy. If M is suitable with w = wy, then SM=3§ I wit.

We assume V = L, and therefore fix § and S_; as above. For our bookeeping function:

Lemma 51 (|[FF10, Lemma 14]). There exists F: wy — Ly, such that for all a € L,, F~!(a) is
unbounded in wy, and F is ¥i-definable over L,,. Moreover, if M, N are suitable models such
that w = wl¥, then FM and FV coincide on wi! Nwy. If M is suitable with wi = wy, then
FM=TF | w.

Fix F' as above. We will also need a tight mad family to preserve and so will use the following
lemma. It is important, for the preservation by countable support iterations of C(Y'), that the
tight mad family has a projective definition and provably consists of only constructible reals.

Lemma 52 ([BFB22, Lemma 4.2]). If V = L then there is a II} tight mad family A such that
ZFC proves A is a subset of L.

A proper forcing notion P is said to be w®-bounding if the ground model reals remain a dominating family in
the extension, in other words, for any f € w® in the P-generic extension, there exists g € V Nw* such that f <* g.
Such forcings preserve the ground model w* as a dominating family.
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By recursion on a < wsg, define a countable support iteration (P, Qg c o < wg, B < wa), where
Py is taken to be the trivial poset. Suppose P, has been defined, and let G, be P,-generic over
L.

The wellorder <,, on L|G,] has a natural definition using the global wellorder <, of the universe
L and the collection of P,-names for reals which we can assume to be nice:

Definition 53. For a forcing notion P and G a P-generic filter over V, for any real x € V[G], a
nice P-name for x is a Po-name of the form & = |, ¢ {{(n,my),p) | p € Ay (%)}, where A, () is

a maximal antichain in P,; note that p I- &(n) = m

U
Since every name for a real has a nice names in the above sense, this allows us to suppose that
if « < f < wy and 7 is a Pg-name which is not a P,-name, then all P,-names precede & with
respect to <p, as it takes longer to construct z. Whenever is a real in L[G,], there exists v < «
such that z has a nice Py-name; let 7, be the minimal such . Define o to be the L-minimal
nice P, -name for x. In this way we can understand the reals of L[G,] by considering the set

N ={ol |z € L|G,] Nw*}.

Notice that as N is a subset of L, N is canonically wellordered by <p; therefore define <, by
letting
T <o y if and only if o3 <y, oy,
whenever x,y are reals of L[G,]. Equivalently, <, y if and only if v, < v, or v, = v, and
o <r, ag‘. Since & = Uf = o,* for any B < a, <p is an initial segment of <,. Let <, denote a
P,-name for <.
Fix a recursive coding - * -: w* X w* — w" by letting

zxy={2n|nez}Uu{2n+1|n €y}

Note the pair (z,y) is constructible from x % y. For any real x define A(z) := z % (w \ x).
Lastly we fix an absolute way of coding the ordinals of w¥.

Definition 54. Let 8 < wl and X C wl. We say X is a sufficiently absolute code for 3 if there
exists a formula ¢ (z,y) such that for any suitable model M containing X N w{\", there exists a
unique § € wé‘/‘ such that (3, X ﬂw{\’l) holds in M, and 3 = 3 in the case w{w = wl. Moreover,
if M, N are any suitable models such that wi = w{v and X NwM € M NN, then it is the same
B € wit Nwd such that ((B, X NwMNM and (¢(B, X Nw¥)V.

Fact 55. (|[FZ10, Fact 5|) Sufficiently absolute codes exist for every 8 < wi.

Proof. Let G: Ord x Ord — Ord be Gédel’s pairing function, and let ¥ (x,y) hold if and only if
x is an ordinal, = € we and y is the <p-least subset of wy such that (x, €) is order-isomorphic to
(w1, G~ y]). The “moreover" of Definition 54 is satisfied because the <;-rank of G~1[y N wi"] is
absolute for transitive models. 0

Henceforth we fix the formula ¢ (z,y) above.
Working in L[G,], let Q, = Q% *Q, be a P,-name for a two-step iteration in which Q¥ is a P,-
name for the creature forcing Q of Definition 16, and Q}, is a P, * Q”-name for the trivial forcing,
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(0% (0%
z1 Ty
this case set 2, = = and y, = y, and define Q) to be a P, * Q2-name for a three-step iteration
K? KL * K2, where:
(1) Kg is a P, * Qg—name for the countable support iteration <Pg’ﬂ,Kg7n B < w,n € w),
where K9, is a P, -name for Q(Saqm) for all m € A(zq * ya).
(2) Let R, be QV-generic over L[G,], and let H, be K?-generic over L[G, * R,]. In LG, *
R, * H,] fix:
e Subsets W, W,, C wy such that W, is a sufficiently absolute code for the ordinal o
and W, is a sufficiently absolute code for an ordinal 1 such that L, = |a| < wr;
e A real x4 @ y, recursively coding the pair (x4, Yo );
e A subset Z, C wy coding G, * Ry * Hy.

unless the following occurs: F(a) = {o } for some reals =,y € L[G4] such that z <, y. In

Fix a computable bijection (-,-,-,-): P(w1) — P(w1), and for X C w; and i < 4 write
(X); for those elements of P(w;) such that X = ((X); : i < 4). Let Xo = (Wq, 20 @
Ya, Wna Za>-

Let @0 = palwi, Xq) be a sentence with parameters w; and X, such that ¢, holds if
and only if:

There exists an ordinal @ € wy such that (X,)o = @ and there exists a pair (z,y) such
that (X,)2 =z @y and for all m € x *xy, Sz42,, is nonstationary, and for all m & z * y,
Sa+2m+1 1S nonstationary.

More formally, ¢q (w1, X ) is the formula:
Ja, (z,y) € A(Xo)[@ € wa AVm € Az *y) Sarm € NS,,],

where NS, denotes the set of nonstationary subsets of w;. Then ¢, is a ¥;-sentence
with parameters wi, X,, and if M is any suitable model containing w; and X, as elements,
then ¢, (w1, Xo) holds in M (this uses that M has the code W,)). We can therefore define
KL be a (Py * Q% % K%)-name for £(¢g).
(3) Let Y, be Kl-generic over L[Gy * Ry * Hy]. Then as {n € w | 2n € Y,} = X, and X,
codes G * Ry * Hy, we have L[Gy * Ry * Hy % Y, = L[Y,]. In this model, let K2 be a
(Py * Qg * Kg * K}l)—name for C(Ya).
This completes the definition of P = P,,,. Then P is a countable support iteration such that
each P, forces that Q is an S_qi-proper forcing notion of size < wq, and by Proposition 27 and
Fact 49, Q, is forced to strongly preserves the tightness of A. Therefore:

Lemma 56. P is S_i-proper, strongly preserves the tightness of A, and has the Ns-cc.

Proof. By Lemma 37, Lemma 6, and Lemma 38. O
Let G be P-generic over L, and define <g=|J <o, where <,= <&

Lemma 57. Let G be P-generic over L, and let z,y be reals in L[G]. Then z < vy if and only if:
(%) there exists a real r such that for every countable suitable M containing r as an element,

there exists @ < wyg! such that for all m € A(x * y), S

“im 18 nonstationary in M.
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Proof. Let z,y be reals in L[G], and let 7., v, < w2 be minimal such that x has a nice P, -name,
and y has a nice P, -name, respectively. First suppose r <¢g y. Then {o2” ,ayy} € L,, and
o, 00} is unbounded in wo, so there is @ > max(7z,,) such that F(a) = {03°,0,'} =

{O’x, oy}, Then our definition of Ql at this point was nontrivial, and was taken with respect to
the reals x, = = and y, = y. Let R, be Qg -generic over L[G,] where G, = P, NG, let H, be
K?-generic over L[G, * Ry), let Y, be Kl -generic over L[G,, * Ry * Hy], and let D, be K2-generic
over L[Gy * Ry * Hy, x Y, = LY,

As D, is C(Yqy)-generic, by Fact 49, item(3), do := () D4 is a real coding Y,. Since the even
part of Y, codes X, also X, and hence the pair (z,,y,) are constructible from d,,.

Now let M be any countable suitable model containing d, as an element. By the above
observations and the fact wi” = w1 , the model M can construct Yy, [ wM and X, NwM.

Since Y, is L(pq) generic, by Lemma 43, M E oW, X0 NwM), meaning in M it holds:

“there exists @ € wa such that (X, Nw; M)y =a and (X, N w{w)Q is the code of a pair of reals
(2/,y') such that for all m € A(z’ xy/) (S24,, € NS,,,).”

Since then A(2/,y") = A(z,y) in M, this implies necessarily (z/,vy') = (z,v).

To see the converse implication, fix a real r given by (x). We need the following.

Claim 58. If A is a suitable model of any cardinality with » € A/, then there exists a € wé\[

such that Sgym € NS, for all m € A(z xy).

Proof. Suppose towards contradiction that N is a suitable model containing r as an element, with
A > Ry, but

(®) N EVa € wy(A(z*y) # {m € w| Satm € NSy, }).

By the downwards Lowenheim—Skolem theorem, there exists a countable elementary submodel
No < N with r € AMy. Note N is a model of ZF~, and Ny models (®). Let A be the
transitive collapse of ANjy; as the Mostowski isomorphism is the identity on countable objects,
we also have r € MNy. Moreover, Nj is a countable, transitive model of ZF~ plus “wy exists”,
and wé\/o = W) NNy = WEN NNy = (wh)No. Therefore AV is a countable suitable model
No

containing r and by downwards absoluteness of the formula in (®), there is no @ € wy° such

that for all m € A(x xy), Sﬁim is nonstationary in AN. Then Nj witnesses the failure of (x), a
contradiction. 0
Therefore we can consider the suitable model M = Ly [r]. By (*) there exists a € wj'! = woy

such that for all m € A(z xy), (SM

a+m

wit = wl = wy [G], we have that Saer

absoluteness, for all such m we also have (Sq4m € NS)FC],

€ NS, M. As S was -definable over L, and the fact

= Sa+m, and Sq4y, is nonstationary in M. By upwards

Claim 59. In L[G], suppose f = a +m < wg, and m &€ A(zy * yo). Then Sz is stationary in
L[G].

Proof. Let p € G be such that plF S € {a+m |m € Alxaxya)}. Let P p={qeP|q<p}
Note that as G is P-generic over L and p € G, then G is also P [ p-generic over L. We have that
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P | p is Sg-proper, since it is a countable support iteration of the Sg-proper forcing notions. To
verify this it suffices to consider the iterand Q, [ p(«). But indeed, any condition in Q, | p(«)

adds no new countable ordinals to Cg C wy \ Sg, and therefore P [ p is Sg-proper. 0
Using the claim, the fact that Soi,, is nonstationary in L[G] implies m € A(z * y), where
(2,9) = (Tay Yo) = (G%G,U;G), and x <, y. Therefore v <qg v. g

Lemma 60. In L|G], <¢ is a Al-definable wellorder of the reals.
Proof. By Lemma 57, we have
r<gy s (z,y),

where ®(z,y) is the formula

Ir € P(w”)[ VM countable, suitable, r € M
3 v
(B < Wt (M =Vm € A(z % y) Sagm € NS,,))]

3 Al

Thus, ®(x,y) is a E:IJ, formula. However, < is also a total wellorder, since if z,y are any reals
in L[G], there is a = max(v;,yy) < wa such that x = (¢2)¢ and y = (U;’)G. Either o <r, o} or
oy <1, 0g; in the case =(z <g y) then we must have y <g z. Therefore the complement of <¢

is Yi-definable, giving that <¢ is Al-definable. O
Thus, we proved the following:

Theorem 61. It is consistent that a = Ry < s = Ny that there exists a A} definable wellorder of
the reals, and a T3 tight mad family of size Ny.

Proof. Suppose V = L, and fix a 1] definable tight mad family A from Lemma 52. Let P be the
wsy-length countable support iteration constructed in this section, and let G be P-generic over V.
First note IP is proper by Lemma 56. Define <¢= {J,., <S; by Lemma 60, <¢ is a A} wellorder
of the reals. Since any set S C [w]* NV[G] such that |S| < wy appears at some inital stage o < wo
of the iteration, by definition Qg is a P,-name for the forcing Q of Definition 16, so S is not
splitting in V[Ggy1]. Therefore (s = Ry)VIC. Next notice that by Shoenfield absoluteness, A is
defined by the same II} formula in V[G] as in V. Moreover A remains a tight mad family in V[G]
by Lemma 56, and therefore A provides a witness for (a = Nl)V[G}. This completes the proof. [

4. DEFINABLE SPECTRA

In this section we consider projective mad families, with a definition of optimal complexity,
which are of size kK > N;. We briefly give an account of the work in this direction thus far.

Friedman and Zdomskyy [FZ10| established that a tight mad family with optimal projective
definition is consistent with b = ¢ = Ry and this was extended by Fischer, Friedman and Zdomskyy
[FFZ11] to b = ¢ = N3. However, a previous result of Raghavan [Rag09| shows no tight mad family
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can contain a perfect subset. The Mansfield-Solovay theorem states that any 33 set is either a
subset of L, or contains a perfect set of nonconstructible reals. Therefore, no 3 tight mad family
can exist in a model of b > N;; the optimal definition of a tight mad family of size greater than
Ny is thus II3. Dropping the tightness requirement, Brendle and Khomskii [BK13] constructed
a model in which b = ¢ > N9, and there exists a H% mad family; this is shown to be consistent
with a A} wellorder of the reals in Fischer, Friedman, and Khomskii [FFK13]. The first work
on projective witnesses of size kK when ¥y < k < ¢ is done by Fischer, Friedman, Schrittesser,
and Tornquist [FFST25]; again by the Mansfield-Solovay theorem, the best possible complexity
of such an object is II3.

So far the attention has been on finding definable mad families witnessing the value of a, the
minimal element of the mad spectrum, this being the set

spec(a) = {|A| | A C [w]” is mad}.

Hechler [Hec72] pioneered the study of the mad spectrum, and in particular he introduces
techniques with which one can include a set C as a subset of the spectrum, provided C' satisfies
a certain list of assumptions. His work was later pursed by Blass [Bla93|, and Shelah and Spinas
[SS15]. Similar considerations have then since been taken with regards to other cardinal charac-
teristics, such as ap and i, where ap is the minimal size of a partition of w® into compact sets,
and i is the minimal size of a maximal independent family (See [FS25|, [Bri24| for the former,
and [FS19|, [FS22| for the latter). By now there is fairly substantial knowledge of the ways to
control realizations of spec(a) in various models of set theory, and likewise recent results provide
methods for controlling the definability of mad families of size a.

One way to build upon these two lines of research is by asking that for each cardinal x which
is the possible size of a mad family, there exists a projective mad family of size k with an optimal
definition. The main result of this section is the following.

Theorem 62 (See Theorem 83). It is consistent with a = Ry < ¢ = Ny that there exists a
I0}-definable tight mad family of size N1, and a 113-definable tight mad family of size V.

The strategy will be as follows. We begin in a model of V = L and fix a I1} tight mad family
A;j. We recursively define a countable support iteration (P, Q,B s < wg, B < wo), along the way
constructing a I} tight mad family As consisting of wo-many Q,-generic reals a,, and such that
each Q, is forced by P, to be an S-proper poset strongly preserving the tightness of A;. The
definition will be a slight modification of the iteration defined in the proof of [FZ10, Theorem 1],
which showed the consistency of b = ¢ = Ny with a IIi-definable tight mad family. Specifically,
they define a countable support iteration of S-proper forcing notions Q, such that:

(1) For cofinally many a < wa, Q, is a certain forcing K, (see Definition 68 below) which
adds a generic real a, as well as sequences 5a and }7& so that:

(a) AqU{aqs} is almost disjoint, where A, is the union of elements constructed thus far;

(b) For a Py-generic filter Gy, aq Nb; is infinite, where (b; : i € w), given by a bookeeping

function, is a sequence of P,-names such that bZGO‘ = b; is an element of Z(A,)T in

V[Ga]Q
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(¢) Co = (Cotm : m € A(aq)) is a countable sequence of generic club subsets of w; and
Y, = (Yoim : m € A(ay)) is a sequence of subsets of wy localizing the addition of
the generic clubs;
(d) Using almost disjoint coding, a, codes the sequences Cy and Y,.
(2) For cofinally many a < wy, Q, = D, Hechler’s forcing for adding a dominating real over
VIGal.

This ensures that when G is a P,-generic filter, in V[G] we have that Ay := {a, | @ < wa}
is a tight almost disjoint family; this is handled by items (1)(a) and (1)(b). Item (1)(c) renders
A a I}-definable subset of [w] in V[G], similarly to how the A} wellorder was obtained in the
previous section. Item (2) guarantees that there are no mad families of size N; in V]G] so that
Ay is a witness to (a = Ro)VI4); this is because iterations of Hechler forcing I not only increase
the size of 9, but also increase b (see, for example, [Blal0]), killing all mad families of size strictly
less than the length of the iteration. This use of D in the consistency of b = ¢ with a I} tight
mad family was pointed out in [FZ10, Question 18|, which asks about the consistency of b < a
with a II3 tight mad family, suggesting that it was unknown to the authors whether the iterand
K, itself added a dominating real. The main result needed for Theorem 83 will show this is not
the case.

Proposition 63 (See Proposition 78). Let K be the Friedman-Zdomskyy forcing notion of Defi-
nition 68, and let A be a tight mad family in the ground model. Then K strongly preserves the
tightness of A.

With this, Theorem 83 can be achieved with a countable support iteration much as that of
[FZ10, Theorem 1| outlined above, however we can modify item (2):

(2)" For cofinally many « < we, Q4 is some S-proper forcing notion which strongly preserves
the tightness of Aj;.
This modification allows flexibility for further applications of the forcing,
Let us say more about how the II3-definability of Ay is achieved. Fixing (S, : @ < ws) and
S_1 as in Proposition 50, in a model of V' = L, at stage « in defining the iteration we want a,, to
uniquely determine a pattern of stationarity /nonstationarity in the sequence

(Satm :m Ew) € L,

namely by coding the sequence Co = (Cotm : m € Aay)), where Cyiy is a generic club disjoint
from Sy for every m € A(aq). This will give that in the final extension, A is an element of
L(R), since membership in Az can be defined as:

(%) a€ Ay < Ja € wy Ljay) = Alag) = {m € w | Sa+m € NSy, }.

Therefore another job of the iterand K, is to add such generic clubs, and so conditions will
consist of a finite part, taking care of approximations to the set a,, and an infinite part, making
countable approximations to a club in wy \ Sq4m. It is important that for m € A(as), Sat+m
remains stationary, so this simultaneous construction must be carried out carefully. To make
the definiton of A projective obtain a projective definition of Ag, the right hand side of (x)
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is localized to the class of countable suitable models (see Definition 40), again relying on the
localization techniques of René David appearing in Definition 41. For this purpose K, adds
the sequence (Yotm : m € A(aq)) such that for each Yoy, the set {8 < w1 | Y,%(25) = 1}
is a sufficiently absolute code for the ordinal « < wo. As a consequence, the initial existential
quantification over wy in (x) will range over the w4 for countable suitable M containing the real
aq. Formally, in the final generic extension V[G], for all a € V[G] N [w]¥,

a € Ay ©VM(M is a countable suitable model and a € M)
Ja < wy' (M =VYm € A(a) Sz is nonstationary).

The right hand side of the above is in the form V3 and thus is a IT3 formula.

For the proof of Theorem 83 we first establish preliminaries; throughout the rest of the section
we work in a model of V' = L unless explicitly stated otherwise. Fix a coanalytic tight mad family
A;, as well as S = (Sa : @ < wy) a sequence of pairwise almost disjoint stationary subsets of wy,
and a stationary subset S_; C wi such that S_1 NS, = 0 for all S, € 5, given by Proposition
50. Let F': Lim(wy) — L, be such that F~!(x) is unbounded in wy for all z € L,,. By [FF10,
Lemma 14|, we can take S and F to be ¥i-definable over L,,,, and moreover that whenever M, N/
are suitable models with wi = w}, then SM and SV agree on wM Ny

Fix 1 (x,y) given by Fact 55 and for all a < w¥, let X, denote a sufficiently absolute code for
.

Whereas the coding of the A% wellorder was achieved by the C(Y')-generic reals, the generic
reals in the current context will result from almost disjoint coding, a method developed by Solovay

and Jensen [SJ70], and for which we give a general definition.

Definition 64. Let R be an almost disjoint family in V', and let X € V be a subset of w;. The
almost disjoint coding of X with respect to R is the partial order P (X) consisting of conditions
(s, F') such that s is a finite subset of w and F' is a finite subset of {r¢ | £ € X} € R. The
extension relation is defined by letting (¢, G) < (s, F) if and only if

(1) t end-extends s, G D F
(2) Forall¢ € X and re € F, (t\s)Nre = 0.
Fact 65. The following hold.

o If (s, F),(t,G) are compatible conditions in Pr(X), then they admit a minimal lower
bound (s Ut, FUG).

e Pr(X) is o-centered.

o If G is Pr(X)-generic over M, let

=|J{s|3F(s,F) € G}.
Then G and a are mutually definable in the generic extension; that is, M[G] = M]|a].

Lemma 66. Let G be a Pr(X)-generic filter over V', and let a be the generic real defined by G
as above. Then in Va], for all £ < w;:

£ € X & anrg is finite.



OPTIMAL PROJECTIVE SPECTRA 29

For proofs of the above, see, for example, [Har77| or [Jec97, Example IV]|. A proof similar to
that of the last lemma will be given in Lemma 79.
For the present coding purposes we therefore fix an almost disjoint family

R:{R("],@ |n€w-2,§€w1}

which is ¥;-definable over L, , and such that for every suitable model M, RN M ={R, ¢ |n €
w- 2,6 € wM}. For an example of such a family see [FZ10, Proposition 3].

Recall in the previous section we had defined a function A: w* — w* such that A(z) was a
real coding both x and w \ x. Because of technical reasons in the coding we will do, we will
modify the definition of this function, and in particular extend its definition to the finite subsets.
Specifically, for s C w, finite or infinite, let

A(s)={2n+1|nes}tU{2n+2|ne (sups\s)},

and let C(s) = A(s) U (w \ max(A(s))). We think of C(s) as the “coding area" associated with
the finite subset s. Denote by E(s), O(s) the sets {s(2n) | 2n < |s|} and {s(2n+1) | 2n+1 < |s|}
respectively, where s(¢) denotes the nth element of s for every ¢ < |s|. For a limit ordinal v and
a function r: v — 2, let Even(r) = {a < v | r(2a) = 1} and Odd(r) = {a < v | r(2a + 1) = 1}.

Lastly, for ordinals a < (8, let 8 — « denote the ordinal v such that o+~ = g. If B is a set of
ordinals, let B —a = {f —a | 8 € B}. If § is an indecomposable ordinal, i.e. § = w? for some
ordinal v, it straightforward to check (o + B)Nd —a = BNJ4.

Recall our goal is to define a countable support iteration (P, Qg ta < wsg, B < wa), such that
for all o < wy, Q is forced to be an S_j-proper poset which strongly preserves the tightness of
Aj, and along the way we construct a I1} tight mad family Ay = {as | @ < ws} consisting of
Qq-generic reals aq.

Continuing with the recursive definition, suppose a < wy and P, has been defined. Let G, be
a Py-generic filter, and let .Aa be a Py-name for the set of elements of Ay constructed up to stage
a. The density arguments of Lemma 79 require the following inductive assumption:

(%) vr € RVA" € [AZ)= (IE(r)\ [ JA'| = [0(r) \ | JA'| = Ro),

Since R is an almost disjoint family, (x) implies that for every A’ € [A2UR]|<¥ and r € R\ 4/,
also |[E(r) \UA'| =10(r) \ UA'| =Ny, as otherwise N7/ is infinite for some ' € A’ N'R.

If o < w9 is a successor ordinal, let Qa = QO be a P,-name for a proper poset of cardinality
N1 such that Il—pa“Qg strongly preserves the tightness of A;”. Q2 is reserved so to yield shorter
proofs of our results in the subsequent sections.

For limit o € ws, unless explicitly mentioned otherwise, Qy is a Py-name for the trivial poset.
Suppose F(a) is a sequence (#; : i € w) of Py-names such that z; = 2, is an infinite subset of
w such that for all i € w, z; € T(A2)".

Claim 67. There exists a limit ordinal 7, € w; with the property that for there exist no finite
subsets J, E of w -2 X (w1 \ na), A2, respectively, and i € w such that z; C Uieres Bing VUE.

Proof. Let I denote the set of all i € w for which there exists J; € [w-2 x w1]<% and E; € [A2]<%
such that x; C U<77,§>€Ji Ry UUE;. Let 1, € wi be a limit ordinal such that for all i € I, if
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(v,m) € J;, then n < n,. Such a limit ordinal exists, since for each i € I there are only countably
many choices for the value of the second coordinate of J;, as J; is finite.

We will show that this 7, satisfies the conclusion of the claim. Fixi € I, J € [w-2X (w1 \na)] <Y,
and E € [A2]<¥; we show that x; Umeres Big UUE. Since E, E; are finite subsets of A2,
by hypothesis on x; we have that ¢; := x; \ |J E'U|J E; is infinite. But since ¢ € I, this means
that ¢; C* U<W7£>€Ji R,.¢). Notice that as R is an almost disjoint family and J N J; = (), we have
that U, eves, Bine) MU ees Bing) is finite. Therefore ¢; MU, ¢yey Ry s finite. In particular
¢i L Up.eyes Bingy, and thus @, € Uy, eey Biney YU E as desired. O

Fix n, € wy as given by the above claim. Fix also Z, C w coding a surjection of w onto 7.
The following is the original definition from [FZ10, Section 3|.

Definition 68. (Friedman, Zdomskyy; [FZ10]) The partial order K, consists of conditions of the
form p = ((s, s*), (ck, yx : k € w)), such that:

(1) ¢x € w1 \ nq is a closed bounded subset such that S,.x N e, = 0;
(2) yr: |yk| — 2 is a function from a countable limit ordinal |yx| € w; such that
o |yl > Nas Yk [ 10 = 0;
e for all v < |ykl|, yx(Na + 2v) = 1 if and only if v = 7, or v > 1, and Even(y;) =
{1} U (0 + Xa).
(3) s € [w]<¥ and s* is a finite subset of the set

{R<m,§> ’ m & A(S),§ S Cm} U {R<w+m,§> ’ m & A(S)a ym(f) = 1} U'Ai'

Additionally, for all n € w such that 2n < [s N R )|, n € Z, if and only if there exists
m € w such that (s N Ry p))(2n) = R0y (2m);
(4) For all k € C(s) and for all limit ordinals v € wy such that 7, <y < |y, if v is a limit
point of ¢ and y = w! for some countable suitable model M containing both y, | v and
¢k N~y as elements, then the following holds in M: “ [Even(yx) — min(Even(yg))] N~y is

the code of some limit ordinal @ € wy such that Sz, is nonstationary.”
For p = ((s,8*), (ck,yr : k € w)) and q = ((¢t,t*), (dk, 21 : k € w)) conditions in K,, define ¢ to
be an extension of p and write ¢ < p if and only if:
(1) t end-extends s, t* 2 s*, and for all z € s*, (t\ s) Nz = (;
(2) For all k € C(t), di end-extends ¢ and zj O yg.
For p = ((s,s"), (ck, yx : k € w)) € Kg, let Fin(p) = (s, s*) denote the finite part of p, and let

Inf(p) = (ck, yx : k € w) denote the infinite part of p. When p,q € K, and ¢ < p, we say ¢ is a
pure extension of p if Fin(p) = Fin(q).

Remark 69. The notion K, can be seen as a hybrid of the forcing notions of almost disjoint
coding (Definition 64), club shooting (Definition 32), and localization (Definition 41). This is
made more explicit in the proof of Lemma 75 below.

Recall X, denotes the sufficiently absolute code for « given by Fact 55.
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The following is our main result of this section; it will establish both properness of the iteration
and preservation and of the tight mad family A;.

Proposition 70 (See Proposition 78). For every p = ((s,s*), (ck,yx : k € w)) € K,, every 0
sufficiently large and countable elementary submodel M < Hy containing p, K, A1, and every
B € I(A;) such that BNY is infinite for all Y € Z(A)) TN M, if M Nwy = j ¢ Ukec(s) Satk:
then there is an (M, K,, A1, B)-generic condition g < p such that Fin(q) = Fin(p).

To prove Proposition 78 we need the following intermediary lemmas.

Lemma 71 ([FF10, Lemma 1|). For every p = ((s, s*), (cx, yx : k € w)) in K, and every 7 € wy,
there exists a pure extension ¢ < p with Inf(q) = (di,2r : k € w), such that |zx| > ~ and
max(dy) > v, for every k € w.

Proof. Fix p = ((s,s*), (ck,yr : k € w)) in K, and k € w, and suppose v € wy is such that v > |y|
and v > max(cy).
First we extend cj. Since wy \ Saik is stationary, and for any 7 € wy the set

T, = {§ € w1 | € is a limit ordinal, £ > n}

is a club, there exists £ € T, NTy N (w1 \ Sa+k). Let (&, : n € w) be an increasing cofinal sequence
with limit & such that &, > |yx| and &, € Sa+ for all n € w. Define dj, := ¢, U{&, | n € w} U{}.
Then dj, is a bounded subset of wy \ 7, with dp N Seak = 0, and it is closed since any increasing
sequence in dj, \ ¢x has limit £ € d.

Next we extend y. Let W C w be any code for a bijection between w and £. Define zi: & — 2
so that z [ |yx| = vk, and Odd(zg | [|ykl, lyx| +w)) = W. For B € [|lyx| + w, &), let zx(8) = 0.

Then ((s,s*), (dg, 2z : k € w)) is a condition in K,; the only item to be checked is (4) of
Definition 68, for limit ordinals 1 such that |yx| < n < |zx|. For such n, v > |yx| +w, so if M is a
transitive model such that n = wi and z;, [ n € M, then M [=*n = wiM is countable”, and hence
M cannot be a model of ZF~. Therefore (4) is vacuously true. O

The following notion appears implicitly in [FZ10].

Definition 72. For a condition p = ((s, s*), (cx, yx : k € w)) in K, and open dense D C K, we
say p is preprocessed for D if and only if for every extension g = ((t,t*), (dg, 2z : k € w)) < p, if
q € D, then already there is some t5 such that ¢ = ({t,t3), (ck,yx : k € w)) is a condition in K,
extending p, and ¢’ € D.

Lemma 73. Suppose p € K, is preprocessed for a dense open set D, and let » < p. Then r is
preprocessed for D.

Proof. Let p = ((s,s"),{ck,yr : k € w)) be preprocessed for D and let r < p, with r =
((t,t%), (dg, 2 = k € w)). If ¢ = ((t1,t]),(d},, 2}, : k € w)) is any extension of r such that ¢ € D,
then also ¢ < p and so by preprocessedness of p there is t5 such that ((¢1,%5), (ck, Yk : k € w)) € D.
Let t5 = t5 Ut*. Then ((t1,t3), (dk, 2x : k € w)) is an extension of r which is also an element of
D, as D is open and ({t1,t35), (dg, 21 : k € w)) < ({t1,t3), {ck, Y : k € w)) € D.

O
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The properness of Shelah’s forcing Q required the set of pure extensions which are preprocessed
for a given open dense set to be dense in Q. This will also be the case for establishing the S_1-
properness of K, and motivates the next lemma.

Lemma 74 ([FZ10, Claim 9]). For any p € K, and open dense D C K, there exists a pure
extension ¢ < p such that ¢ is preprocessed for D.

Proof. Let p = ((s,s"), (ck, yx : k € w)) € K, and let D C K, be an open dense set. Let M < Hp
be a countable elementary submodel, where 6 is sufficiently large and M contains p, K, X, and
D as elements. Let j = M Nwy. Since S,k is costationary for all & € C(s), without loss of
generality we may assume j ¢ kel (s) Sath-

Let {(rn, $n) | n € w} enumerate all pairs (r, s) € (Ko N M) X [w]<“ such that r < p and each
pair appears infinitely often. Let also (j, : n € w) be an increasing cofinal sequence in j with
{jn | n € w} € M. By induction on n € w, construct sequences (d}, 2} : k € w) € M such that:

(1) df = cg, 2) =y, for all k € w;
(2) If there exists some 7 € K, N M such that:
(a) 7 <rp;
(b) 7 < {(s,8%), <d2,z,’; k€ w));
(c) 7€ D;
(d) Fin(r) = (spn,t*) and Inf(7) = (d}, 2}, : k € w) for some t* and some (d}, 2}, : k € w);
then let <d"+1 ZH k € w) be an extension of Inf(7), in the sense that dZ'H end-
extends d and 27! D z;, so that ((s,s*), (d}T, 2} : k € w)) is a condition in K,
with max(d”“) > j, and |2t > j, for each k 6 C( ). To be precise, for all k €
C(sp), Lemma 71 gives the existence of dzﬂ and z”Jr1 as desired, though to ensure
({8, 8"), (dT1 201 1 k € w)) is a condition in K, below Pn = ((s,8%),(d}, 2} - k € w)),
we need to also take care of k € C(s) \ C(sy); this is still taken care of by Lemma 71
applied to py,.

If no such 7 exists, let (d}™ 2" : k € w) be any extension of Inf(7) such that

({8, 8"), (AT, 20 1 k € w)) is a condition in K, with max(dy™) > j, and [z]T] > j,
for each k € C(s).

Set di, = Upeo df U {7} and 2z, =, 21 for all k € C(s), and for k & C(s) let dj, = z, = 0.

We verify that g := ((s,s*), (dg, 21 : k € w)) is a condition in K,. That clauses (1) and (2)
hold in the definition of K, follows from the fact j = M N w; is a countable limit ordinal. As
Fin(q) = Fin(p), (3) is immediately satisfied. It suffices to check item (4) for £ € C(s) and the
limit ordinal v = j. Fix k € C(s) and let M be a countable suitable model with wy"! = 7 and
zk | 7,dx, Ny € M. Since v is an indecomposable ordinal, [Even(z;) — min(Even(zx))] Ny =
Xo N~y € M. Since X, is a sufficiently absolute code for «, in M it holds that there exists a
unique & € wy? such that M E“X, N~y codes &”.

Let m: M — M be the Mostowski collapse isomorphism, and so note that wi = 7(MnNw;) = 7,
ie. wM=wM. As M was an elementary submodel of Hy and X, € M, in M the ordinal « is
uniquely coded by X,, and so in M the ordinal 7(a) = @ is the unique solution to ¥ (z, 7(X,)),
that is, @ is uniquely coded by 7(X,) = X, N~. Again since we had chosen X, to be a sufficiently
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absolute code for a and M, M are suitable models with w} = w, we have that in both M and
M, the unique ordinal coded by X, N~y is @ = a.

In M, (dy N Sayx) Ny =0, so by elementarity, in M, 7(dy) = dj N+ is disjoint from 7(Sqqx) =
Sgﬂk = Saik N7y. Again as w! = w{‘/‘, by choice of the sequence g, we have Sgﬁk = Sé\ik, SO
also in M it holds that dév‘ = dg N~y is disjoint from Sé\ik' Since dp, Ny € M and dy N~y is a
closed unbounded set in wi!, M =“Sg, is nonstationary”. Therefore ¢ € K,,.

Let us see that ¢ € K, is as desired. Take any r < ¢; without loss of generality r € D. Write
r = ((t,t*),(d}, 2z, : k € w)). Since both t,t* are finite objects and for all n € w, the sequence
(dR,z} + k € w) € M, there exists m € w such that ™ = ((t,* N M), (d", 2" : k € w)) is a
condition in K, N M, where t* N M is a finite subset of

{Rue | L€ At), 6 € dNjYU{Rare | €€ AR),y;, [ 5(€) =1}
Ufag | B<anM}.
It can be checked that r < rM , and also rM < p. Therefore there exists n > m such that rM =,
and ¢t = s,. Note that r € K, has properties (a)-(d) above: (a) and (b) follow from the fact

r < q,7™, and (c) is immediate by assumption. Lastly (d) follows from the fact ¢ = s,,. Then in
Hy it holds:

Jz(x € Ko A z satisfies (a)-(d)),

so by elementarity M satisifes the same formula, i.e., there exists some condition 7 € K, " M, 7
has properties (a)-(d). In particular there are ¢ and (dy, 7 : k € w) in M with the properties
that t3 2 s* N (t* N M) and di, Z, end-extend df, 2} respectively for k € C(sy,), and

7= ((sn =t,t3), (dp, Z - k € W)) € Ko N M.

Then at this stage of the inductive construction we chose dg“,zzﬂ to be appropriate end-
extensions of dy, 2, respectively for all k € C(s). One can verify that 7 = ((s,,, t5), (d, 21, : k € w))
is a condition in K, extending ¢, and since 7 < 7 and D is open, T € D. O

Lemma 75. Let ¢ € K,N M, where M < Hy is a countable elementary submodel containing K,
and Aj, and let Z be a K,-name for an element of Z(A;)™. Then

W ={mecw]|3p<q (Fin(p) =Fin(¢) AplFm € 2Z)}
is an element of Z(A;)" N M.
Proof. Fix a finite FF C A; N M. We have that
b, Z\ UF is infinite,
so in particular ¢ kg, Z \ |JF € [w]“.

Lemma 76. For all ¢ € K, and X a K,-name for an infinite subset of w, there exists p < ¢ with
Fin(p) = Fin(q) and there exists mP € w such that p IF mP = X (j), where X (j) denotes the j-th
element of X.
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Proof. Fix ¢ and X as above, and write ¢ = ({(s,s*), (cx,yx : k € w)). Consider the countable
support product
Py = H Q"™ (SOé+k) X L (Ya+k)7
keC(s)
where Q" (S, 1) consists of closed bounded subsets ¢ C wy \ 7 such that ¢, N Spik = 0 and
is ordered by end extension; the partial order £7(Y,yj) consists of functions yi: |yx| — 2 with
domain |yg|, such that

e |yi| € w1\ Nn is a countable limit ordinal and yg [ 7o = 0;

e Even(yr) = ({na} U (na + Xa)) N ykl;

e for all v < |y|, if ¥ = w for some suitable model such that y; [ v € M and 7 is a
limit point of ¢, then M E“Even(yy) is the code for some @ € wy such that Sz, is
nonstationary ”.

L (Y4yr) is ordered by end-extension. For notational simplicity we will suppress the superscript
Mo in what follows.

The ordering on Py is defined by (dg,zr : k € w) < {(ck,yr : k € w) if and only if dj is an
end-extension of ¢ and zp D yg, i.e., if and only if (dg,zx) < Q(Sasr) X L(Yar) (ck,yx). Here,
<Q(S..,) denotes the ordering of the club shooting forcing of Definition 32, however with the
modification that condition are closed bounded subsets containing only ordinals strictly greater
than 7,. Likewise, <p(y, ) denotes the extension relation for the localization forcing of Definition
41, where the ¥;-formula being localized is ¢ (w1, Xq) which asserts “Even(yy) — min(Even(yg))
is the code for some @ € w; such that Sgz;x is nonstationary”.

For all k € C(s), find ¢}, y; such that ¢}, <gs,,,) & and ¥, <r(v,,,) Yk, and

(s Uk) b QS0 ) % £0Vsn) X () = 1005

for some m; € w.
Then (¢}, y : k € w) € P, is an extension of (ck, Yk : k € w) and forces X(j) = m;. Therefore
(Fin(q), (¢}, yj, : k € w)) <k, ¢ and decides X (7). O

Therefore, letting X be a Ky-name for Z \ |J F, for every k € w there exists j > k and a pure
extension ¢; < ¢ in K,, and there exists m; € w with ¢ IF X(j) = 7;. Then

Yi={m;|j>k,q; < qang;l-m; = X(j)}
is an infinite set such that for all m; € Y, m; € W as witnessed by ¢;, and moreover m; & |J F
since ¢; IF mj € Z\ |JF. This shows W \ |J F is infinite, proving the lemma. O

Remark 77. We can make the following observations about the forcings P, for s € [w]<%“, defined
in the above proof.
o If (c,yp : k € w) Ikp, X(5) = my, then ((D,0), (cx,yx : k € W) IFk, X (5) = m;.
e P, is a complete suborder of Py.
e For all s € [w]<¥, Py does not add new reals. This follows from the fact Q(Sq4x) and
L(Ya+r) do not add new reals.
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Proposition 78. For every p = ((s,s*), (ck,yr : k € w)) € K,, every 0 sufficiently large and
countable elementary submodel M < Hy containing p, K,, A1, and every B € Z(A;) such that
BNY is infinite for all Y € Z(ANT N M, if MNwy = j ¢ Ukec(s) Sa+k, then there is an
(M,Kq, A1, B)-generic condition ¢ < p such that Fin(q) = Fin(p).

Proof. Let 6 be a sufficiently large regular cardinal and let M < Hy be a countable elementary
submodel containing p, K, and Aj, such that j = M Nwy & UkEC(S) Setk- Fix B € Z(A;) such
that B NY is infinite for all Y € Z(A;)* N M. Let {D,, | n € w} enumerate all open dense
subsets of K, in M, and let {Z, | n € w} enumerate all K,-names for subsets of w in M which
are forced to be in Z(A;)" such that each name appears infinitely often. Let (j, : n € w) be
an increasing cofinal sequence of ordinals converging to j. We inductively define a descending
sequence (g, : n € w) € M NK, where ¢, = ((s,s), (d}}, ¢} : k € w)) and such that:

(1) di = e, 20 = yks

(2) For all n € w and k € C(s), dj"! is an end-extension of d} and 2™ D 27;

(3) max(d), [+ > o

(4) @n+1 is preprocessed for Dy;

(5) Gns1 IF (Zo N B) \ 4 0.

Assume ¢, has been constructed. First extend ¢, with a pure extension ¢, such that ¢, is

preprocessed for D,,. Next let

Wit = {m e w|3Ir < ¢,(Fin(r) = Fin(q) A rl-m € Z,)}.

Since Wy, 11 € Z(A;)™ by Lemma 75, fix m,, € w such that m,, > n and m,, € W,,.1NB. Letr < ¢,
be given by m, € W, and let ¢,+1 < r be a pure extension of r such that max(dﬁ“) > j, and
\zZH] > jn. Then ¢, 41 satisfies the above clauses, so this completes the inductive construction.

Set di = Upen, dp U {7} and 2z = e, 2 for all k € C(s), and for k € C(s), let dy = 2z, = 0.
Define q := ((s, s*), (dg, 2z, : k € w)). Then ¢ is a condition in K,, as this can be verified as in the
proof of Lemma 74. It remains to see that ¢ is an (M, K,, .A;, B)-generic condition.

First we show ¢ is (M, K,)-generic by showing that for all n € w, D, N M is predense below
¢. Fix n and let r = ((t,t*),(d},, 2, : k € w)) < ¢, and we can assume r € D,,. Then as r < ¢, 41
and gp41 is preprocessed for D, there is 7’ = ((¢,t3), <dz+1, ZZH ik € w) < gp41 for some finite
t5 € M, such that already ' € D,,. Clearly ' € M. Then r and " are compatible, as witnessed
by the condition ((t,t* Ut3), (d}, 2, : k € w)).

Lastly, for all n € w we have ¢ IF |Z, N B| = w. Let { € w, and take any r < ¢. Find i > ¢ such
that Z; = Z,; then r < gi+1 and so since g;4+1 satisifes property (5), we have

rlF0# (ZNB)\i=(Z,NB)\iC (Z,NB)\L
As ¢ was arbitrary this shows ¢ forces Z, N B is infinite, and therefore ¢ is an (M, K, Ay, B)-

generic condition.

0

Let H, be K,-generic over V[G,], and set Y& = UpEHa Yi, Cff = UpEHa Cly O = UpEHa s,
A% = Ay U{an}. The following lemma gives consequences of forcing with K.
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Lemma 79 ([FZ10, Claim 11]). The following hold.

(1) aq € [w]¥ is almost disjoint from all elements of A2 ;

(2) For all i € w, aq N z; is infinite;

(3) For all m € A(aq), CS, is a club in w; such that C% N Sqqm = 0, and for all £ € wy,
§ € Cp, if and only if ag N Ry, ¢) is finite;

(4) For all m € A(aq), V,%: w1 — 2 is a total function, and for all £ € wy, Y,%(§) = 1 if and
only if ag N Riyym ¢ 1s finite;

(5) For all n € w, n € Z, if and only if there exists m € w such that (aq N R))(2n) =
Ry0,0y(2m);

(6) For every r € R and finite A’ C A2, [E(r) \UA'| =10(r) \UA'| = w.

Proof. For item (1), to see a, is infinite it suffices to show that for every n € w the set
D, = {p € K, | Fin(p) = (s,s"), Ik > n(k € s)}

is dense in K, for each n € w. Let p = ((s,s*), (ck,di : k € w)) € K,, and suppose max s < n.
Since s* € [R U AZ]<¥, the assumption (x) implies that y := w \ (s* U R Un) is infinite (as
it contains both E(R),O(R) for any R € R\ (s* U{R)})). Therefore we may fix m := miny
and define p' = ((sU{m}, s*), (ck,yk : k € w)) € K,; then p’ <p and p’ € D,. So D, is dense for
every n, implying a, is infinite. Next, for any a € A2, a, N a is finite, since first of all

D, ={peK, |Fin(p) = (s,s), a € s*}

is dense, and if p € H, N Dy, then aNay Cans.
For the proof of (2), fix i,n € w, and let

D;, ={p €K, |Fin(p) = (s,s"),Ik > n(k € z; N s)}.

We show D, is dense in K,. Let p = ((s,5%),(ck,yx : k € w)) € K,. Recall that n, < w;
was a limit ordinal fixed so to ensure that z; \ |J F' is never a subset of U(v,é)eJ Ry ¢), for any
F e [A2]<¥ and any J € [w-2 X (w1 \ 7a)]<. Since for any (v,&) € w-2 x wy with R, ¢ € s*,
items (1) and (2) of the definition of K, imply £ > 7, and v > 0, the set y := z; \ |J s* is infinite
by the former. However by the latter we have two cases:

Case I y \ Ry is infinite. Then let m := min(y \ (U Ry, Un U (maxs) + 1), and let
p = ((sU{m},s*), (ck,yr : k € w)). Then p/ < p and p’ € D;,,.

Case I1: y C* Rg0). In this case we need to take care of the additional assumption in item (3) of
the definition of K,, namely the coding of Z, C w. We may assume without loss of generality that
Y\ R0 € n. Inthe case [sNRy g | = 2j for some j € w, let m := min(yNR )\ (nU(max s+1)),
and define p’ as in Case I with respect to this latter choice of integer m. Then p’ < pand p’ € D; ,,.

If [s N Ryl = 25 — 1 for some j € w, we consider whether or not j € Z,. If j € Z,, let
mo := min(E(Ryg)\ (nU(maxs+1)), and note this can be done as E(R ) \J s is infinite by
(x). Let my := min(y \ mo), and define p' := ({(s U {mg, m1}, s*), (ck,yr : k € w)). Then p' € K,
and p’ € D;,,

If j & Za, take mg := min(O(Ry)) \ (n U (maxs + 1)) and my := min(y \ myg), and then
define p’ as above; in either case p’ < p and p’ € D;,,.
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Regarding item (3), if m € A(aq) then m € A(s) for some p € H, with Fin(p) = (s, s*),
so Lemma 71 implies C% is a closed unbounded set of wi \ Sa4m. To see a, almost disjointly
codes Cp, using Ry, = {Rime) | € € wi}, first let £ € wy be an element of C7,. Then & € ¢y,
for some p = ((s,8"), (ck,yr : k € w)) € H,. We may assume m € A(s), since otherwise as
m € Aaa) = Uyen, {A®1) | Fin(g) = (¢,¢)}, there exists ¢ € H, with Fin(gq) = (¢,¢*) and
m € A(t). The there is r € H, be a common extension of p,q. So without loss of generality
m € A(s). If Ry, ¢ € s then Cf, Nag C s, and if Ry, ¢ ¢ s* then we use the density of the set

Dy e ={q € Ka | Fin(q) = (t,t"), Ryne €17}

to find an extension ¢ < p with ¢ N D,, . Whenever such a ¢ is also an element of H,, then ¢
witnesses that C}}, N a, is finite as in the previous case.
If ¢ ¢ CY, let p € Hy be such that m € A(s), where Fin(p) = (s, s*). The set

D, ={peKy|3k>nkeRpyg¢Ns}

is dense; the proof is similar to the proof of item (1), and uses the fact that R, ¢y \Us*"UR ) is
infinite, by (*) and the fact R, ¢) is never an element of ¢* for any ((¢,t*), (dy, 2 : k € w)) € Hq.
Item (4) is verified almost identically to item (3).
Next we check (5), which implies that a, codes Z,, using R . Fix n € w such that n € Z,.
The set

DR,2n = {P € K, | Fln(p) = <S7S*>7 |S N R(O,O)‘ > 27’L}

is dense in K,, using the assumption (x). Indeed, if p = ((s,s*) : (cx,yx : k € w)) € K, with
|sN R0y = k < 2n, we perform a finite induction of length 2n — k, picking integers m; to be the
(k+j)-th element of sN R gy. If k+j is odd, let m; = min(R o) \ (Us" UmaxsU{my | £ < j})).
If £+ j is even and k% € Za, let mj = min(E(Ry) \ (Us* UmaxsU{my | £ < j})). In the
case k% & Z,, replace O with E in the previous definition of m;. That all this is possible is by
assumption (x). Then it can be verified ((sU{m; | j < 2n—k},s*), (ck, yr : kK € w)) is a condition
extending p, and is an element of Dg 2.

Lastly, to prove item (6), fix » € R. Since () holds, it suffices to show that E(r) \ a, and

O(r) \ aq are infinite. For the latter suffices to show that the set
DE = {p e K, | Fin(p) = (s,5") Ak > n(k <maxs Ak € E(r)\ s)}

is dense in K, and for the former it suffices that DY is dense, where D is defined analagously
for O(t). Letting p = ((s, s*), (ck,d : k € w)) be any condition in K,, let m, = min E(r)\ (|J s*U
R0y U (maxs +1)Un), and let m, = min O(r) \ (Us* U Ry U (maxs + 1) Un).

Define p' = ((s U {min(w \ (me + mo + 1))}, 5*), (ck,di, : k € w)). Then p’ € DE N D? and
extends p, as desired. ]

Recall that S_; was a stationary subset of w; such that S_1 NS = () for each S € S

Lemma 80 ([FZ10, Corollary 12]). K, is S_i-proper. Moreover, for every p = ((s, s*) : {ck, y :
k € w)) € K, the subposet Ko [ p = {r € Ko [ < p} is (w1 \ U,ec(s) Sa+n)- Proper.
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Proof. The first statement follows from the fact S_; was a fixed stationary subset in L disjoint
from each S € S. For the second statement, let 8 = o + m where m & C(s), so m < max(A(s))
and m ¢ A(s). Let ¢ = ((t,t*), (dk, 2, : k € w)) € K, [ p. Then t is an end extension of s, so A(t)
is an end-extension of A(s), and therefore m ¢ C(t). Then define ¢ = ((¢t,t*),(d}, 2}, : k € w))
such that dj, = dj, and y}, = yj, for all k € C(t), and let dj,, =y}, = 0. Then ¢’ € K, [ p and
¢’ < q. Therefore it is dense in K, [ p to not be adding any ordinals to wy \ Sa+m, and 80 Saim
remains stationary in any K, | p extension. O

This completes the definition of (P, Qg s <ws, B < wa).

Corollary 81. P,, is S_j-proper and strongly preserves the tightness of A;. Moreover for all
m € w\ A(aq), Sa+m remains stationary in L[G].

Proof. By Proposition 78, Lemmas 80 and 37. 0

Lemma 82 (|[FZ10, Lemma 13]). If G is P-generic over L, then in L[G], Az is definable by the
following I1} formula:

a € Ay & VM[(M is a countable suitable model, a € M)
Ja < wy' (M = VYm € A(a)(Sgrm is nonstationary)]

Proof. Let ¢(a) denote the formula on the right-hand side of the equivalence above.
Then since any countable suitable model can be recursively coded by a real and the satisfaction
relation = for such models is Al, it is easy to see ¢(a) is of the form V3, i.e. is a I1} formula.
Now we show Az = {a € L|G] | p(a)}. Suppose first a € Ay. Then there exists a limit ordinal
« < ws such that a = a,, the generic real added by K,. Let M be a countable suitable model
containing a,. By absoluteness of the family R and items (3),(4),(5) of Lemma 12,

(C2NwMm e Alay)), (Y2 TwM:m e Alay)), Za € M.

m

Note that

(0,0),(C N (WM +1), 2 TwM 1 k € w))
is a condition in K. So by (4) of Definition 68, for each m € A(aq), in M it holds that Even(Y,% |
wM) — min(Even(Y,2 | wi)) is the unique code of some limit ordinal @, such that Sg—y,, is
nonstationary. By item (2) of Definition 68, Even(Y,2 | wi) — min(Even(Y,2 | wM)) = X, for
every m € A(ag), so the unique ordinal @, is the same @ € w)! for all such m.

Conversesly, let a € L[G] be such that ¢(a) holds. As shown in Claim 58, ¢(a) holds in suitable
models containing a of any infinite cardinality, in particular for the suitable model N' = L, [G].
Since wy = wQL[G] = wh and SV = S = § if a € N and there exists a < w}’ such that
Shm

in L[G]. By Lemma 81, it must be that K, was nontrivial and the set of m for which Sy,

= Sqi+m 18 nonstationary in N, by upwards absoluteness, Sy1.m,m is no longer stationary
is nonstationary in L[G] were those m € A(a,), where a, was the generic real added by K,
Therefore A(a) = A(aq) and so a = a4 € As. O

Theorem 83. It is consistent that b = a = Ny < ¢ = Ny, there exists a I1}-definable tight mad
family of size Ry, and a T13-definable tight mad family of size Ny.
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Proof. Let P be the countable support iteration defined above, let G be P-generic over L, and let
Az = {aq | @ < wy}, where a, = 4§ where @, is the generic real added by Q,. By Lemma 79,
item (1), Ay is an almost disjoint family of infinite subsets of w. To see it is tight, suppose that
there is {x; | i € w} € L|G] such that x; € Z(A3)" for every i € w. Then there is o < wy such that
(x; 11 € w) € LGy, where Go = G NPy, so there is a sequence of Po-names (&; : ¢ € w) € Ly,
such that x; = :UZG(’ Since F~'({#; : i € w)) is unbounded in wy, there exists 8 > « such that
F(B) = (& : i € w). By definition of Qg, and Lemma 79 item (2), ag N z; is infinite in L[G4]
for all i € w, where ag is the Qg-generic real. As ag € A, we have (As is tight)XG). That Aj is
[1}-definable in L[G] is by Lemma 82.

As Ay € L and A is H%—deﬁnable in L, by Shoenfield absoluteness A; remains H%—deﬁnable
in L|G]. By Proposition 78, for every a < wy, Qa is a Py-name for a proper forcing strongly
preserving the tightness of A;. Therefore (a = |A;| = 8 < ¢ = Ry = | Ay]) ), O

5. CARDINAL CHARACTERISTIC CONSTELLATIONS AND OPTIMAL PROJECTIVE SPECTRA
With the results of the previous section we can prove our main theorem.

Theorem 84. [t is consistent that X1 = a < § = Vg, there exists a Azl,) wellorder of the reals, as
well as tight mad families of cardinality ¥y and o, which are respectively 111 and 113 definable.

Proof. We work in a model of V' = L. The following can be obtained analagously as in Lemma
50, using Solovay’s theorem on the existence of wi-many pairwise disjoint stationary subsets of
wy and the relativized ¢ sequence O for stationary 7' C wy; the assertion Q7 holds under V = L
for any such T

Lemma 85. There exist pairwise disjoint stationary sets Ty, 11, 7> C wi such that for ¢ < 2 there
are sequences

S = (8 CTy:a <)
where S, C wj is stationary costationary, and for distinct o, 8 < wo, SflﬂSé is bounded. Moreover,
whenever M, N are suitable models such that wi' = w, then ()M : a < wM Nw)) =
(SN - a < wt nwdY).

Let A; be a coanalytic tight mad family, and fix ¥i-definable bookeeping function F': Lim N
wa — L,,, and a ¥j-definable almost disjoint family R such that F,R are as in the proof of
Corollary 61 and Definition 68.

Define a countable support iteration (]P’Q,QB o < wy, B < ws), with Py being the trivial
forcing. Let G, be P,-generic over L; the wellordering <, on the reals of L[G,] is defined exactly
as for the proof of Theorem 61. Let Q. be a Py-name for the two-step iteration Qg * Qé such
that Qg is a Py-name for Q of Definition 16. Unless one of the following cases occurs, Qé is a
P, * Qg—name for the trivial forcing.

Case I: o is a limit ordinal and F(a) = {b; | i € w} is a sequence of P, * Q0-names such that
in V[G,], ¢ is an element of Z(A2)* for each i € w. Then let Q) be a P, * QY name for the

forcing notion K, of Definition 68, with respect to the same countable limit ordinal 7, € wy, and
modifying item (1) by letting ¢z C wy \ 7o be a closed bounded subset such that Sg+k Ne, = 0.
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Case 1I: F(a) = {og,0y} is a pair of Py-names for reals in L[G,] such that of <y of (ie.,
z=(09)% <a y = (09)). In this case define QL to be a P, * Q)-name for Q, = KO « K1 K2
as defined in the proof of Corollary 61, however modifying the definition of K by taking closed
bounded subsets of w1 \ S1.,, for k € A(zq * ya).

This completes the definition of P = P,,. Note that for all a < wa, Qa is a P,-name for
either a proper, a T} UTy-proper, or a Ty U Ts-proper forcing notion, and in each case Qq strongly
preserves the tightness of A;. Therefore IP is Th-proper and so preserves wi as well as the tightness
of Aj. Let G be P-generic over L. For each a < ws, Q, = Q adds a real not split by the ground

LG For cofinally many a < wa, Q4 adds an infinite a, C w such that

model reals, so (s = Ng)
Az = {aq | @ < wa} is a tight mad family with a II3 definition in L[G]. Moreover the wellorder
<¢= Ugp<w, can be shown to be a A} wellorder of the reals of L[G], as in Theorem 61. Then

altogether we have that L[G] witnesses the conclusions of the theorem. g

6. CONCLUDING REMARKS AND QUESTIONS

6.1. Separating parallel notions of tightness. While our constructions in Theorem 83 and
Theorem 84 required active work to ensure both Xj, ¢ € spec(a) were witnessed by definable mad
families with an definition of minimal complexity, in other cases, obtaining optimal projective
witnesses for multiple values in the spectrum associated to a cardinal characteristic is almost
immediate. For example, consider the cardinal

a. = min{|F| | F C w®, F is maximal eventually different},

where a family F C w® is eventually different if f(n) = g(n) for all but finitely many n € w, for
every distinct f, g € F. Such a family is mazimal eventually different (med) if it is maximal with
respect to inclusion. Shelah and Horowitz [HS24| have shown that there always exists a Borel
maximal eventually different of size ¢, and a model of Ny = a, =0 < ¢ with a coanalytic witness
to a. is given in [FS21, Theorem 8|; therefore in this model both Nj, ¢ € spec(a.) are witnessed
by a definable family of minimal complexity. Fischer and Switzer [FS21] introduce a parallel
notion of tightness for eventually different families as well as a notion of strong preservation of
tightness of eventually different families by proper forcings. It is shown in [FS21, Theorem 6.1]
that Miller forcing strongly preserves the tightness of eventually different families; recall Miller
forcing also strongly preserves tightness in the case of mad families. However it is not the case
that the class of forcings strongly preserving tightness of eventually different families coincides
with the class of forcings preserving tightness of almost disjoint families, and Shelah’s forcing of
Definition 16 witnesses this. Indeed, the analagous version of Theorem 84 for eventually different
families cannot hold, by the following ZFC result:

Theorem 86. s < non(M) < a,

The latter inequality follows from the combinatorial characterization of non(M) given by Bar-
toszynski and Judah; see also [FS21, Fact 1.2]. The former inequality can be found in [Bla93|.
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A notion of tightness has also been introduced for another combinatorial family, maximal
cofinitary groups, which give rise to the cardinal invariant a,:

ag =min{|G| | G < S, G is a maximal cofinitary group}.

A subgroup G of the symmetric group Soc = {f € w® | f is a bijection} is called cofinitary if
every f € G which is not the identity function has only finitely many fixed points. A cofinitary
group is maximal (meg) if if it is maximal with respect to inclusion. The recent work of Fischer,
Schrittesser, and Schembecker [FSS25| defines the notion of a tight cofinitary group, strengthening
the notion of maximality, as well as a notion of preservation of tightness (see [FSS25, Definition
3]). They show that the Sacks coding satisfies this property in [FSS25, Theorem 17|, obtaining
the consistency of a;, = Ny < ¢ = Ry with a Al wellorder and moreover a coanalytic tight
cofinitary group of size Nq; previously a coanalytic witness of the fact a; = 8y < ¢ was constructed
in [FST17|. Similar to the case of eventually different families, Horowitz and Shelah [HS25|
have constructed a Borel maximal cofinitary group (under ZF), and thus there always exists an
optimally definable mcg of size ¢. Therefore the model of [FSS25] shows the consistency of a
Al wellorder together with ¢ = Ry, and every cardinal in spec(a,) = {®1, Ny} is witnessed by a
projective cofinitary group with an minimally complex definition.

The ZFC theorem above again precludes Shelah’s forcing Q from satisfying this preservation
notion. Taking these facts into account we can see Theorem 30 as providing an example of a
moment when the parallel notions of tightness for almost disjoint families, eventually different
families, and cofinitary groups diverge.

6.2. Questions. Proposition 78 about the iterand K, shows that the ws-length iteration of the
in the proof of Theorem 83 is weakly w*-bounding. However, this does not immediately imply
K, is almost w*-bounding. In general we may ask:

Question 87. If a countable support iteration of proper forcings is weakly w*-bounding, is each
iterand an almost w“-bounding forcing notion?

In particular, it is still open if the Friedman-Zdomskyy poset is almost w®“-bounding. Given a
positive answer to this, however, could yield a proof of the relative consistency of b < a =5 = N,
with a TI3 tight witness for a, in the following way.

In [She84|, Shelah shows the consistency of both b = a < s as well as b < a = 5 (see [She84,
Main Theorem 1.15(2)|; The latter is achieved by a modification of the original creature forcing
Q (see Definition 16). This modification is to first add w;-many Cohen reals to a model V' of CH,
obtaining a model Vi = V[(r; : i < w1)], and in this latter model there exists a partial order Q[I]
which is proper, almost w“-bounding, and adds a real almost disjoint from every element of a
given mad family A € V;. This partial order was integrated in the construction of a A% wellorder
with countable support and produced Theorem 3 of [FF10], showing b < a = s is consistent with
a A} wellorder of the reals. That the initial segments of the iteration were almost w*-bounding
followed from the fact that Sacks coding C(Y) is w*-bounding.
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Recall the definability of the Al wellorder and the definability of the I1} tight mad family
are both achieved by similar coding methods (namely, coding a certain pattern of stationar-
ity /nonstationarity into an w-block of the fixed sequence S ), and the primary difference between
the two constructions is the type of generic real added. Whereas in the former construction of
[FF10] the generic reals were Sacks reals, in the latter the generic reals can be seen as a form of
Mathias real. More specifically, when a, is a Ky-generic real, a,, arises as a result of the forc-
ing notion of almost disjoint coding; this forcing can be considered a form of restricted Mathias
forcing.

This relative consistency result would answer Question 18 of [FZ10|:

Question 88. Is b < a consistent with a I1} (tight) mad family of size a?

While a model of Ry < b = ¢ and each x € spec(a) has a [T} witness is by Brendle and Khomskii
[BK13], their construction relies heavily on the preservation of splitting families and increases the
size of ¢ by using Hechler forcing. Therefore their construction cannot be used to answer the
following.

Question 89. Is it consistent with a < ¢ or even with a < s = ¢ that there exist coanalytic mad
families of sizes a and ¢?

Because our above constructions used countable support iterations, our techniques can only
yield models with ¢ = Ny. A natural question following our work is the following:

Question 90. Is it consistent that [spec(a)| > 3 and for each k € spec(a) there exists a projective
mad family of size xk with an optimal definition?
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